• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada-gráficos]me ajudem

[Derivada-gráficos]me ajudem

Mensagempor bernardo1744 » Seg Nov 28, 2011 19:34

boa tarde pessoal. eu queria muito tirar uma dúvida sobre uma questão de prova . na minha prova foi dada a seguinte função [CÁLCULO 1] ache F(x)= e^(x^2-1) , e estava pedindo pra achar as assíntotas , os pontos críticos e os pontos de inflexão. me ajudem por favor. desde já grato ^^
bernardo1744
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 28, 2011 19:30
Formação Escolar: GRADUAÇÃO
Área/Curso: engneharia meCânica
Andamento: cursando

Re: [Derivada-gráficos]me ajudem

Mensagempor LuizAquino » Seg Nov 28, 2011 20:18

bernardo1744 escreveu:boa tarde pessoal. eu queria muito tirar uma dúvida sobre uma questão de prova . na minha prova foi dada a seguinte função [CÁLCULO 1] ache F(x)= e^(x^2-1) , e estava pedindo pra achar as assíntotas , os pontos críticos e os pontos de inflexão. me ajudem por favor. desde já grato ^^


Quais foram as suas tentativas?

Por favor, informe onde está exatamente a sua dúvida.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada-gráficos]me ajudem

Mensagempor bernardo1744 » Seg Nov 28, 2011 20:20

minha dúvida é q eu não sei achar assintota em função desse tipo e a do ponto de inflexão eu queria ver qnto que dava sabe :)
bernardo1744
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 28, 2011 19:30
Formação Escolar: GRADUAÇÃO
Área/Curso: engneharia meCânica
Andamento: cursando

Re: [Derivada-gráficos]me ajudem

Mensagempor LuizAquino » Ter Nov 29, 2011 10:16

bernardo1744 escreveu:minha dúvida é q eu não sei achar assintota em função desse tipo e a do ponto de inflexão eu queria ver qnto que dava sabe :)


A função f(x) = e^{x^2 - 1} não tem assíntotas. Para uma explicação sobre assíntotas, vide o tópico:

assintota
viewtopic.php?f=120&t=6002

Quanto aos pontos de inflexão, é necessário estudar o sinal da segunda derivada de f.

Calculando as derivadas, temos que:

f^\prime (x) = 2xe^{x^2 - 1} \Rightarrow f^{\prime\prime}(x) = 2e^{x^2 - 1} + 4x^2e^{x^2 - 1} \Rightarrow f^{\prime\prime}(x) = \left(2 + 4x^2\right)e^{x^2 - 1}

Note que tanto o termo 2 + 4x^2 quanto o termo e^{x^2 - 1} são sempre positivos e não nulos. Portanto, temos que f^{\prime\prime}(x) > 0 para todo x no domínio de f^{\prime\prime} . Logo, o gráfico de f não tem ponto de inflexão e sua concavidade é sempre para cima.

A figura abaixo ilustra o gráfico de f.

gráfico.png
gráfico.png (6.78 KiB) Exibido 1303 vezes


Observação

Analisando a primeira derivada de f, temos que x = 0 é um ponto crítico.

Além disso, para x < 0 temos f^\prime(x) < 0 (ou seja, f decresce no intervalo (-\infty,\,0) ).

Por outro lado, para x > 0 temos f^\prime(x) > 0 (ou seja, f cresce no intervalo (0,\,+\infty) ).

Observando o gráfico da função f ilustrado acima, note como essas informações são confirmadas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}