• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor Beatriz4 » Sex Nov 25, 2011 23:45

Já resolvi este limite mas não me dá o valor certo. Vou colocar aqui a minha resolução e gostaria que alguém me dissesse onde está o meu erro(s).

(n->+inf)lim (2^(2n+1))*((n+2)/(4n+1))^n

lim (2^(2n+1))*((n+2)/(4n+1))^n = lim ((2^(2n+1))/((n+2)/(4n+1))^n)*(((n+2)/(4n+1))^n)/((n+2)/(4n+1))^n = lim 2*((2^2)^n)/((n+2)/(4n+1))^n =
= lim 2*(4/((n+2)/(4n+1)))^n = lim 2*(4(4n+1)/(n+2)))^n = lim 2 ((16n+4)/(n+2))^n

Até aqui penso estar bem, gostaria que me dissessem como continuar para saber se a minha resoluçã está correcta. segundo um progrma de resolução de limites este dá 2e^(7/4) e a mim deu-me +inf.

Agradecia mesmo se me ajudassem!
Beatriz4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Nov 25, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando

Re: Limites

Mensagempor LuizAquino » Sáb Nov 26, 2011 17:57

Beatriz4 escreveu:Já resolvi este limite mas não me dá o valor certo. Vou colocar aqui a minha resolução e gostaria que alguém me dissesse onde está o meu erro(s).

(n->+inf)lim (2^(2n+1))*((n+2)/(4n+1))^n


Eis o limite que você deseja calcular:

\lim_{n\to +\infty} 2^{2n+1}\cdot \left(\frac{n+2}{4n+1}\right)^n

Beatriz4 escreveu:lim (2^(2n+1))*((n+2)/(4n+1))^n = lim ((2^(2n+1))/((n+2)/(4n+1))^n)*(((n+2)/(4n+1))^n)/((n+2)/(4n+1))^n = lim 2*((2^2)^n)/((n+2)/(4n+1))^n =
= lim 2*(4/((n+2)/(4n+1)))^n = lim 2*(4(4n+1)/(n+2)))^n = lim 2 ((16n+4)/(n+2))^n


Utilizando as regras de precedência, o que você escreveu acima foi:

\lim_{n\to +\infty} 2^{2n+1}\cdot \left(\frac{n+2}{4n+1}\right)^n =

= \lim_{n\to +\infty} \frac{2^{2n+1}}{\left(\frac{n+2}{4n+1}\right)^n} \cdot \frac{\left(\frac{n+2}{4n+1}\right)^n}{\left(\frac{n+2}{4n+1}\right)^n}

= \lim_{n\to +\infty}  2\cdot \frac{\left[\left(2^2\right)^n\right]}{\left(\frac{n+2}{4n+1}\right)^n}

= \lim_{n\to +\infty} 2\cdot \left(\frac{4}{\frac{n+2}{4n+1}}\right)^n

= \lim_{n\to +\infty} 2\cdot \left[\frac{4(4n+1)}{n+2}\right]^n

= \lim_{n\to +\infty} 2\cdot \left(\frac{16n+4}{n+2}\right)^n

Beatriz4 escreveu:Até aqui penso estar bem, gostaria que me dissessem como continuar para saber se a minha resoluçã está correcta.

Você já errou do primeiro para o segundo passo.

Beatriz4 escreveu:segundo um progrma de resolução de limites este dá 2e^(7/4) e a mim deu-me +inf.


\lim_{n\to +\infty} 2^{2n+1}\cdot \left(\frac{n+2}{4n+1}\right)^n =

= \lim_{n\to +\infty} 2\cdot 4^n \cdot \left(\frac{n+2}{4n+1}\right)^n

= \lim_{n\to +\infty} 2\left(4\cdot \frac{n+2}{4n+1}\right)^n

= \lim_{n\to +\infty} 2\left[4 \cdot \frac{n\left(1+\frac{2}{n}\right)}{4n\left(1+\frac{1}{4n}\right)}\right]^n

= \lim_{n\to +\infty} 2\left[\frac{\left(1+\frac{2}{n}\right)}{\left(1+\frac{1}{4n}\right)}\right]^n

=  2\left[\frac{\displaystyle{\lim_{n\to +\infty}\left(1+\frac{2}{n}\right)^n}}{\displaystyle{\lim_{n\to +\infty} \left(1+\frac{1}{4n}\right)^n}}\right]

=  2\left(\frac{e^2}{e^{\frac{1}{4}}}\right)

=  2e^{\frac{7}{4}}

Observação

Note que:

\lim_{n\to +\infty}\left(1+\frac{k}{n}\right)^n = e^{k}

De fato, fazendo a substituição u = \frac{k}{n} , temos que:

\lim_{n\to +\infty}\left(1+\frac{k}{n}\right)^n = \lim_{u\to 0}\left(1+u\right)^\frac{k}{u}

= \lim_{u\to 0} \left[\left(1+u\right)^\frac{1}{u}\right]^k

=  \left[\lim_{u\to 0} \left(1+u\right)^\frac{1}{u}\right]^k

= e^k
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limites

Mensagempor Beatriz4 » Dom Nov 27, 2011 11:05

Obrigada pela ajuda =)
Beatriz4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Nov 25, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.