• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema

Problema

Mensagempor Andreza » Qua Nov 09, 2011 17:27

Partindo de um ponto O no centro de um pátio, Antônio andou 5 metros em linha reta até um ponto P. Em seguida, caminhou até um ponto Q, descrevendo um arco de circunferência de 288°, cujo centro é o ponto O. A partir daí caminhou até o ponto M, diametralmente oposto. Quanto Antônio caminhou aproximadamente?


Neste exercício eu tenho q usar uma das funções trigonométricas?

Desde já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Problema

Mensagempor LuizAquino » Sex Nov 11, 2011 18:43

Andreza escreveu:Partindo de um ponto O no centro de um pátio, Antônio andou 5 metros em linha reta até um ponto P. Em seguida, caminhou até um ponto Q, descrevendo um arco de circunferência de 288°, cujo centro é o ponto O. A partir daí caminhou até o ponto M, diametralmente oposto. Quanto Antônio caminhou aproximadamente?


A figura abaixo ilustra o exercício.

caminhada.png
caminhada.png (18.87 KiB) Exibido 1334 vezes


O total caminhado será equivalente a soma entre o comprimento do segmento OP, do arco PMQ e do segmento QM.

Observação

Lembre-se que o comprimento c de um arco com ângulo central \theta e raio r é dado por c = r\theta (sendo que \theta deve estar em radianos).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Problema

Mensagempor SsEstevesS » Dom Nov 27, 2011 10:17

OP=5,
MQ=10,
e o arco PMQ em vermelho no desenho acima vai ser igual a:
2.pi.288/360


Depois é so somar 5+10+2.pi.288/360
SsEstevesS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Nov 27, 2011 10:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: CEFET
Andamento: cursando

Re: Problema

Mensagempor Andreza » Dom Nov 27, 2011 11:22

Muito obrigada pela ajuda mas a resposta do gabarito é 40,12m.

Penso q seja assim:

\pi=180º

x=288º

x=288º \pi / 180º

x=1,6\pi


Substituindo na fórmula C=\Theta . \pi
C=8\pi
C= 25,12 + 15
C= 40,12m
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.