• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivação e continuidade]

[derivação e continuidade]

Mensagempor Ana_Rodrigues » Sáb Nov 26, 2011 14:07

Olá gente, sei que toda função diferenciável é contínua, mas tem toda função contínua é diferenciável. Alguém poderia me explicar isso detalhadamente? Eu já procurei vídeos no youtube explicando, inclusive vídeos de autores que são moderadores deste fórum, e lá tinha o exemplo da função modular f(x)=|x|, que não era diferenciável, porém era contínua isto porque a função possuía um bico em x=0. Neste caso a função é contínua em x=0?por que?


Agradeço desde já, à quem me ajudar a entender!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [derivação e continuidade]

Mensagempor MarceloFantini » Sáb Nov 26, 2011 14:34

A função modular apenas não é diferenciável na origem, mas é em todos os outros pontos. Para um exemplo de função contínua em todos os pontos e diferenciável em nenhum, veja http://en.wikipedia.org/wiki/Weierstrass_function .
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [derivação e continuidade]

Mensagempor LuizAquino » Sáb Nov 26, 2011 16:43

Ana_Rodrigues escreveu:Eu já procurei vídeos no youtube explicando, inclusive vídeos de autores que são moderadores deste fórum, e lá tinha o exemplo da função modular f(x)=|x|, que não era diferenciável, porém era contínua isto porque a função possuía um bico em x=0.


Você deve estar se referindo ao Exemplo 3 da vídeo-aula "10. Cálculo I - Função Derivada" disponível em meu canal no YouTube.

Vejamos o enunciado desse exemplo.

Exemplo 3: A função f(x)=|x| é diferenciável em 0?

Como foi explicado nessa mesma vídeo aula, uma função é diferenciável no ponto x=c se o limite abaixo existe e é finito:

\lim_{x\to c} \frac{f(x)-f(c)}{x-c}

O exemplo em questão quer avaliar se a função é diferenciável em x=0. Ou seja, precisamos analisar se o limite abaixo existe e é finito:

\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}

Ora, mas esse limite é mesmo que:

\lim_{x\to 0} \frac{|x|}{x}

Aplicando a definição de módulo, obtemos que:

\lim_{x\to 0^-} \frac{|x|}{x} = \lim_{x\to 0^-} \frac{-x}{x} = \lim_{x\to 0^-} -1 = -1

\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{x}{x} = \lim_{x\to 0^+} 1 = 1

Já que esses limites laterais são distintos, temos que não existe \lim_{x\to 0} \frac{|x|}{x} .

Já que esse limite não existe, temos que a função não é diferenciável em x=0.

Vale destacar que essa função é diferenciável em qualquer outro ponto x=c, com c não nulo. Faça o teste!

Ana_Rodrigues escreveu:Neste caso a função é contínua em x=0?por que?

Sim.

Lembre-se que por definição, uma função f é contínua em x=c se ocorrer:

\lim_{x\to c} f(x) = f(c)

Sendo assim, para saber se a função é contínua em x=0 será necessário verificar se ocorre:

\lim_{x\to 0} f(x) = f(0)

Note que nesse caso isso ocorre:

\begin{cases}
\displaystyle{\lim_{x\to 0^-} |x| = \lim_{x\to 0^-} -x = 0} \\
\\
\displaystyle{\lim_{x\to 0^+} |x| = \lim_{x\to 0^+} x = 0}
\end{cases}
\Rightarrow
\lim_{x\to 0} |x| = 0

Por outro lado, f(0)=|0|=0. Sendo assim, temos que:

\lim_{x\to 0} f(x) = f(0)

Podemos então afirmar que f é contínua em x=0.

Vale destacar que essa função é contínua em qualquer outro ponto x=c, com c não nulo. Faça o teste!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?