Encontrar sobre a parábola y^2=4x um ponto tal que sua distância à diretriz seja igual a 3.
Eu tentei resolver essa questão mas não ta dando certo
Eu tentei fazer pela igualdade
d(p,f)=d(p,d)
Como d(p,d)=3
d(p,f)=3
E pela equação y^2=4x
2p=4
p=2
p/2=1
Neste caso f(1,0)
Eu fiz usando esse raciocínio e não ta dando certo!
Agradeço à quem puder me explicar como se faz essa questão!

um ponto tal que sua distância à diretriz seja igual a 3.
, onde
, para algum k real.


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)