• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas]

[Derivadas]

Mensagempor thiago toledo » Qua Nov 16, 2011 20:50

Quais as dimensões do cilindro circular reto e de areá lateral máxima que pode ser inscrito numa esfera de raio R?

Pessoal eu sei que a areá lateral de um cilindro é: A=2.pi.r.h e a areá da esfera é A' = 2.pi.R², como eu resumo a equação para que eu possa derivar e encontrar as dimensões do cilindro, ou seja, seu raio e sua altura?
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivadas]

Mensagempor LuizAquino » Qui Nov 17, 2011 16:26

thiago toledo escreveu:Quais as dimensões do cilindro circular reto e de areá lateral máxima que pode ser inscrito numa esfera de raio R?


A figura abaixo ilustra o exercício.

cilindro_e_esfera.png
cilindro_e_esfera.png (8.9 KiB) Exibido 758 vezes


thiago toledo escreveu:(...) eu sei que a areá lateral de um cilindro é: A=2.pi.r.h (...)


Ok.

thiago toledo escreveu:(...) e a areá da esfera é A' = 2.pi.R² (..)


Errado. A área da esfera é 4\pi R^2 . Entretanto, não é necessário usar essa informação no exercício.

thiago toledo escreveu:(...) como eu resumo a equação para que eu possa derivar e encontrar as dimensões do cilindro, ou seja, seu raio e sua altura? (...)


Analisando a figura acima, note que:

h = \sqrt{(2R)^2 - (2r)^2}

Dessa forma, a área lateral do cilindro em função do raio r será:

A(r) = 4\pi r \sqrt{R^2 - r^2}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}