por OtavioBonassi » Ter Nov 15, 2011 11:45
Bom dia galera, procurei aqui no fórum mas nao tinha nada específico sobre EDO (ou equação diferencial linear do segundo grau), entao resolvi criar esse tópico aqui em Sistemas de Equações.
A dúvida é a seguinte :
Numa EDO não homogênea de segunda ordem, da forma a(x) y''+ b(x) y' + c(x) y = d(x) , onde o d(x) possui uma função trigonométrica. Como eu procedo na resolução ? Tenho uma resposta "pronta" aqui ,ela está escrita na seguinte forma genérica :
Se d(x) está na forma :
![d(x)= {e}^{u*x}[{P}_{n}(x)*cos(v*x) + {Q}_{m}(x)*sen(v*x)] d(x)= {e}^{u*x}[{P}_{n}(x)*cos(v*x) + {Q}_{m}(x)*sen(v*x)]](/latexrender/pictures/17426d408e7d6e6fb7d09078a5588de4.png)
, onde P e Q são polinomios de grau n e m respectivamente
Casos de resposta :
1°. u+- i*v não é raiz da equação característica ------->
![{y}_{n}(x) = {e}^{u*x}[{S}_{M}(x)*cos(v*x) + {T}_{M}(x)*sen(v*x)] {y}_{n}(x) = {e}^{u*x}[{S}_{M}(x)*cos(v*x) + {T}_{M}(x)*sen(v*x)]](/latexrender/pictures/356fd45de7f313322dcfea58e0534e77.png)
, M= max {m,n}
2°. u +- i*v é raiz da equação característica -------->
![{y}_{n}(x) = x*{e}^{u*x}[{S}_{M}(x)*cos(v*x) + {T}_{M}(x)*sen(v*x)] {y}_{n}(x) = x*{e}^{u*x}[{S}_{M}(x)*cos(v*x) + {T}_{M}(x)*sen(v*x)]](/latexrender/pictures/7c343fd706491b022144e9a6dce1ad73.png)
, M= max {m,n}
A pergunta é .... o que DIABOS é

e

? E o que é o "M= max {m,n}" ? Sei que é uma resolução feita e muita gente pode nao resolver desse jeito, mas é o que eu tenho pra resolver !
Valeu !
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- derivada de segunda ordem
por lgbmp » Sex Set 03, 2010 19:25
- 2 Respostas
- 2916 Exibições
- Última mensagem por lgbmp

Seg Set 06, 2010 13:35
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada de segunda ordem]
por spektroos » Sáb Nov 24, 2012 23:43
- 2 Respostas
- 2094 Exibições
- Última mensagem por spektroos

Dom Nov 25, 2012 02:39
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada de segunda ordem]
por spektroos » Sáb Nov 24, 2012 23:48
- 1 Respostas
- 1450 Exibições
- Última mensagem por e8group

Dom Nov 25, 2012 10:12
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de segunda ordem
por Fernandobertolaccini » Sex Jul 11, 2014 14:37
- 0 Respostas
- 919 Exibições
- Última mensagem por Fernandobertolaccini

Sex Jul 11, 2014 14:37
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de segunda ordem
por Maou » Qua Dez 03, 2014 13:45
- 2 Respostas
- 1710 Exibições
- Última mensagem por lucas_carvalho

Qua Dez 03, 2014 15:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.