• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de equações de 2º Grau

Sistemas de equações de 2º Grau

Mensagempor Walquiria » Dom Nov 13, 2011 23:04

x-y=1
x^2+y^2= 8,5
Sendo x>0 e y>0, a soma x+y vale: Resposta:4
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Sistemas de equações de 2º Grau

Mensagempor MarceloFantini » Seg Nov 14, 2011 05:20

x-y=1 \implies (x-y)^2 = x^2 -2xy +y^2 = 1^2 \implies -2xy +8,5 = 1 \implies 2xy = 7,5.

Agora, (x+y)^2 = x^2 +2xy +y^2 = 8,5 + 7,5 = 16, e daí x+y=4.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Sistemas de equações de 2º Grau

Mensagempor Walquiria » Seg Nov 14, 2011 10:35

NÃO ENTENDI SUA RESOLUÇÃO????????????????
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Sistemas de equações de 2º Grau

Mensagempor MarceloFantini » Seg Nov 14, 2011 18:08

Primeiramente, sabemos que x-y=1. Elevei ambos ao quadrado e usando que x^2 +y^2 =8,5, conclui que 2xy=7,5. Queremos saber o valor de x+y, logo, experimentei calcular o seu valor ao quadrado: (x+y)^2 = x^2 +2xy +y^2. Usando novamente a informação do enunciado e o dado que acabei de encontrar, temos x^2 +2xy +y^2 = x^2 +y^2 +2xy = 8,5 + 7,5 = 16. Então (x+y)^2 = 16, e portanto x+y=4.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)