• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 3º Grau

Equação do 3º Grau

Mensagempor DHST » Sáb Nov 12, 2011 13:38

Sou novo no fórum, qualquer erro por favor me avisem.

Caiu uma questão na Unesp 2012 1ª Fase e eu não a soube resolver. A Equação era: x³-3x²-x+K=0, para encontrar o valor do K, pra facilitar, aqui vai a imagem já com a resolução.

Imagem

Meu problema é que eu não consigo entender como encontrar as raízes da equação do 3º Grau, eu observei a resolução e mesmo assim não consegui desvendar, por exemplo, em qualquer equação desse tipo, quando o coeficiente D não foi dado e é pedido para encontrá-lo, de onde veio veio aquele 3 ao qual a equação foi igualada? Tem como resolver ainda mais detalhadamente? Faz alguma diferença a informação de que é uma P.A.? Como o resultado de A=1?. E não tem nessa questão, mais e se pedisse todas as três raízes da equação, como encontrá-las?

Obrigado. Espero que tenha ficado claro e eu voltarei aqui para tentar entender.

Gostei do fórum, parece muito completo!
DHST
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Nov 12, 2011 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação do 3º Grau

Mensagempor DHST » Sáb Nov 12, 2011 19:28

Pessoal, eu to me matando pra tentar entender e nada. Eu não entendo como encontrar as raízes. Não entendo como utilizar as Relações de Girard para encontrar o coeficiente D da equação e todas as raízes.

Eu não entendo porque a-r, a, a+r são as raízes da equação, tipo, é sempre assim? uma fórmula pra este tipo de exercício? Existe uma explicação para serem essas as raízes?

Enfim, =(, também não entendo aquela formulinha das relações de girard pra equação do terceiro grau, que é essa aqui abaixo:

Imagem

Me ajudem, por favor. Muito obrigado!
DHST
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Nov 12, 2011 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação do 3º Grau

Mensagempor MarceloFantini » Sáb Nov 12, 2011 23:31

DHST, você não está sabendo relacionar as informações do problema.

Primeiro, o enunciado diz que as raízes formam uma progressão aritmética, logo podemos dizer que as raízes são da forma a-r, a e a+r, onde r é a razão da progressão.

Segundo, as relações de Girard dizem que a soma das raízes é igual a \frac{-b}{a}, onde b é o coeficiente do x^2. Logo,

(a-r)+a+(a+r) = \frac{-b}{a} = 3 \implies 3a = 3 \implies a=1.

Mas a é uma raíz do polinômio, então a^3 -3a^2-a +k = 0, substituindo a=1 teremos 1^3 -3 \cdot 1^2 -1 + k = 0 \implies k=3.

Em tempo: a diferença de tempo entre as suas mensagens foi de 6 horas. Quando pedir por ajuda, espere, somos todos voluntários e não passamos o dia no fórum.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação do 3º Grau

Mensagempor DHST » Dom Nov 13, 2011 08:04

Valeu! Entendi tudo agora. E como disse, sou novo aqui, só que a mensagem 2 foi mais uma complementação do que eu não entendia, para que me pudessem ajudar exatamente onde eu precisava, porque eu tinha tentado resolver o exercício entre esse período aí de 6 horas.
DHST
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Nov 12, 2011 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.