• Anúncio Global
    Respostas
    Exibições
    Última mensagem

SE, EM DETERMINADO TRIBUNAL, HA 54 JUIZES

SE, EM DETERMINADO TRIBUNAL, HA 54 JUIZES

Mensagempor vania a » Qua Out 19, 2011 07:52

Considere que a corregedoria-geral da justiça do trabalho de
determinado estado tenha constatado, em 2007, que, no
resíduo de processos em fase de execução nas varas do
trabalho desse estado, apenas 23% tiveram solução, e que
esse índice não tem diminuído. Nessa situação, caso um
cidadão tivesse, em 2007, um processo em fase de execução,
então a probabilidade de seu processo não ser resolvido era
superior a 4/5.

RESPOSTA ERRADA
vania a
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Set 07, 2011 16:13
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: formado

Re: SE, EM DETERMINADO TRIBUNAL, HA 54 JUIZES

Mensagempor Neperiano » Qua Nov 09, 2011 15:39

Ola

Divida 4/5 = 0,8, ou seja 80%, então a probabilidade de um processo não ser resolvido era superior a 80% sabendo que só 23% tiveram soluções?

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.