• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor Claudin » Ter Nov 01, 2011 13:23

Sejam dois planos: x-y+2=0 e x+y+z=0

a)Determine equações paramétricas para a reta r interseção dos planos PI1 e PI2.

Achei os vetores normais do plano PI1 e PI2, são eles N1= (1, -1, 0) e N2= (1, 1, 1)

Depois fiz o produto vetorial de ambos para encontrar o vetor diretor

cheguei em (-i, -j, 2k)

Fiz um sistema

x-y+2=0
x+y+z=0

Atribui y=0

e encontrei o ponto P= (-1, 0, 1)

Eq. Paramétricas
x= -1-t
y= -t
z= 1+2t

b)Encontre uma equação geral do plano PI que é ortogonal a reta r e que passa pelo ponto P= (3, 5, 4)

Não consegui resolver a letra b
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Vetores

Mensagempor LuizAquino » Dom Nov 06, 2011 16:04

Claudin escreveu:Sejam dois planos: x-y+2=0 e x+y+z=0

a)Determine equações paramétricas para a reta r interseção dos planos PI1 e PI2.

Achei os vetores normais do plano PI1 e PI2, são eles N1= (1, -1, 0) e N2= (1, 1, 1)

Ok.

Claudin escreveu:Depois fiz o produto vetorial de ambos para encontrar o vetor diretor

cheguei em (-i, -j, 2k)

Ok.

Claudin escreveu:Fiz um sistema

x-y+2=0
x+y+z=0

Atribui y=0

e encontrei o ponto P= (-1, 0, 1)

Errado. Note que para y = 0 o ponto encontrado seria P = (-2, 0, 2).

Claudin escreveu:Eq. Paramétricas
x= -1-t
y= -t
z= 1+2t

Errado. As equações nesse caso seriam:

\begin{cases}
x = -2 - t \\
y = - t \\
z = 2 + 2t
\end{cases}

Claudin escreveu:b)Encontre uma equação geral do plano PI que é ortogonal a reta r e que passa pelo ponto P= (3, 5, 4)

Não consegui resolver a letra b


Se esse plano é ortogonal a reta, então o vetor normal do plano é paralelo ao vetor diretor da reta. Em particular, fazendo \vec{n} = 1\cdot \vec{d}, podemos tomar o vetor normal \vec{n} como sendo igual ao vetor diretor \vec{d} .

Portanto, a equação do plano será:

(- 1)\cdot(x-3) + (- 1)\cdot (y-5) + 2\cdot (z-4) = 0

-x - y + 2z = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)