• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatorial - resolução 1

Fatorial - resolução 1

Mensagempor jamiel » Qua Nov 02, 2011 18:50

Quantas números divisíveis por 3, de cinco algarismos distintos, podemos formar com os algarismos 1, 2, 3, 4, 6, 8 e 9?


Eu fiz 7*6*5*4 = 840, deu igual ao gabarito, mas eu fiquei pensando: como os divisíveis por 3 entram nessa história?

Tentei fazer uma árvorezinha aqui no papel, mas é inviável!


Alguém para ajudar nessa?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Fatorial - resolução 1

Mensagempor jose henrique » Qua Nov 02, 2011 20:16

olá, bem os números formados por cinco algarismos e que são divisiveis por três, correto?

________x___________x____________
1º 2º 3º


na verdade a dificuldade está no terceiro, visto que este número formado pelos algarismo 1, 2,3, 4, 6, 8 e 9. e na verdade vc deve começar por este e depois volta para o primeiro e depois para o segundo

129
318
216
e assim por diante
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: Fatorial - resolução 1

Mensagempor jamiel » Qui Nov 03, 2011 02:31

jose henrique escreveu:olá, bem os números formados por cinco algarismos e que são divisiveis por três, correto?

________x___________x____________
1º 2º 3º


na verdade a dificuldade está no terceiro, visto que este número formado pelos algarismo 1, 2,3, 4, 6, 8 e 9. e na verdade vc deve começar por este e depois volta para o primeiro e depois para o segundo

129
318
216
e assim por diante



xJznx escreveu:Cara eu pensei assim.
Agrupar esses 7 números em grupos de 5 , os quais somados dêm um múltiplo de 3 ( critério para um número ser divisível por 3 é a soma de seus algarismos ser um número múltiplo de 3)

ex: Uma possibilidade são esses algarismos: 1/2/3/4/8.

de qualquer maneira que arrumarmos eles , o resultado vai ser divisível por 3 , ou seja , nesse grupo temos 5! números ( permutação simples dos 5 algarismos).

mas to sem tempo pra terminar... mas acho que seguindo nessa linha dá pra sair.


Tentei isso aqui agora a noite -->

98643 = 30
98642 = x
98641 = x
86432 = x
86431 = x
64329 = 24
64328 = x
64321 = x
43219 = x
43218 = 18
43216 = x
32198 = x
32196 = 21
21986 = x
21984 = 24
21983 = x
19863 = 27
19862 = x
98621 = x
86219 = x
62198 = x
21986 = x
21984 = 24
21983 = x
19832 = x ---> eu acho que termina aqui, daqui em diante há repetição!

São 7 casos onde em cada um acontece 5 combinações

7 * 5! = 840 ...

Eu acho que dessa vez foi, einh? rsrr

Putz ... isso requer um pensamento bastante abstrato!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}