• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor jr_freitas » Seg Out 31, 2011 14:02

Boa tarde!
Podem me ajudar no seguinte exercício de integral?
\int u^1^,^1\left(1/3u-1 \right)du
Eu consigo chegar até essa parte, depois não sei o que faço:
\int u^2^,^1/2,1 \left(1/3 * 1/u - 1 \right)du, estou fazendo errado?...por favor me expliquem!
Obrigado!
jr_freitas
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Out 06, 2011 10:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecnólogo em Análise de Sistemas
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Seg Out 31, 2011 15:05

Freitas, não é possível entender qual é a integral a ser calculada. Para utilizar fração, use o comando
Código: Selecionar todos
\frac{a}{b}
e o resultado será \frac{a}{b}. Para fazer um produto, use
Código: Selecionar todos
c \cdot d
e aparecerá c \cdot d.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral

Mensagempor jr_freitas » Seg Out 31, 2011 15:49

Ok! Desculpe.
Não consigo resolver o seguinte exercício de Integral:
\int u^1^,^1\left(\frac{1}{3u}-1\right)du
Eu consigo chegar até essa parte, depois não sei o que faço:
\int\frac{u^2^,^1}{2,1} \left(\frac{1}{3}*\frac{1}{u}-1\right)du, (não sei se está certo).
Obrigado pela ajuda!
jr_freitas
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Out 06, 2011 10:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecnólogo em Análise de Sistemas
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Seg Out 31, 2011 16:07

Se você aplicar a distributiva, verá que a integral fica \int u^{0,1} - u^{1,1} \, \textrm{d}u = \int u^{0,1} \, \textrm{d}u - \int u^{1,1} \, \textrm{d}u = \frac{u^{1,1}}{1,1} + \frac{u^{2,1}}{2,1} + C. É isso? Ainda não entendo porque apareceria um expoente fracionário.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral

Mensagempor procyon » Ter Nov 01, 2011 00:16

\int u^{1,1}. \left( \frac{1}{3u} -1 \right).du \\
\\
\text{Distribuindo os fatores:} \\
\\
\int \left[ u^{1,1}. \frac{1}{3u} -1 . u^{1,1} \right]du\\
\\
\text{Distribuindo as potencias:} \\
\\
\int \left[ \frac{u^{1}.u^{0,1}}{3u}  -1 . u^{1,1} \right]du \\
\\
\text{Cortando o que puder e usando a propriedade da diferenca de uma integral:} \\
\\
\frac{1}{3} \int u^{0,1}.du - \int u^{1,1}du \\
\\
\text{Integrando temos:} \\
\\
\left[ \frac{1}{3} . \frac{u^{1,1}}{1,1}  - \frac{u^{2,1}}{2,1} \right] + C \\
\\
\text{E finalmente:} \\
\\
\frac{u^{1,1}}{3,3} - \frac{u^{2,1}}{2,1} + C

Seria isso ?
Espero que esteja certo..
procyon
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 31, 2011 23:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Integral

Mensagempor MarceloFantini » Ter Nov 01, 2011 03:34

De fato, esqueci o \frac{1}{3} multiplicando. Desculpe.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.