• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Elementos da Matematica] Quantificadore

[Elementos da Matematica] Quantificadore

Mensagempor Me_Titus » Dom Out 23, 2011 14:17

Oi,

Estou a ter muita dificuldade a entender estes conceitos. Sera que alguem me poderia atraves de exemplo, explicar as seguintes condicoes?

\forall x \exists y\left(x + y = 0 \right)

\forall x \forall y\left(x + y = 0 \right)

\exists x \forall y\left(x + y = 0 \right)

\exists x \exists y\left(x + y = 0 \right)

Obrigado
Me_Titus
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 15, 2011 11:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Elementos da Matematica] Quantificadore

Mensagempor Me_Titus » Dom Out 23, 2011 15:09

Para quem tiver com dificuldades em entender este assunto:

"For example x y P( x, y ) is not equivalent to y x P( x, y ). For let P( x, y ) represent x < y for the set of numbers as the universe, for example. Then x y P( x, y ) reads "for every number x, there is a number y that is greater than x", which is true, while y x P( x, y ) reads "there is a number y that is greater than any number", which is not true. "

Ajudou-me imenso.

http://www.cs.odu.edu/~toida/nerzic/lev ... ation.html
Me_Titus
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 15, 2011 11:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.