• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Intregral]

[Intregral]

Mensagempor thiago toledo » Seg Out 17, 2011 16:22

Calcular \int_{R}^{}\int_{}^{}\ dxdy onde R é a região do primeiro quadrante limitado por:

5\leq y\leq9-{x}^{2}

Como resolvo esta ingral?
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Intregral]

Mensagempor LuizAquino » Seg Out 17, 2011 22:07

thiago toledo escreveu:Calcular \iint_{R}\,dxdy onde R é a região do primeiro quadrante limitado por:
5\leq y\leq9-{x}^{2}


A região R está ilustrada abaixo.

região-R.png
região-R.png (7.53 KiB) Exibido 779 vezes


Note que a interseção, no primeiro quadrante, entre a reta e a parábola ocorre no ponto x = 2 (isto é, para x = 2 temos que 9 - x^2 = 5). Podemos então escrever R como sendo:

R = \left\{(x,\,y)\in\mathbb{R}^2 \mid 0\leq x \leq 2,\, 5\leq y\leq9-{x}^{2}\right\}

Sendo assim, temos que

\int_0^2 \int_{5}^{9-x^2} \, dy \, dx = \int_0^2 \left[y\right]_5^{9-x^2} \, dx

= \int_0^2 4 - x^2 \, dx

= \left[4x - \frac{x^3}{3}\right]_0^2 = \frac{16}{3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}