• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão aritimetica

Progressão aritimetica

Mensagempor Carlos NI » Qua Abr 22, 2009 23:51

Qual é o centésimo numero par.
Resposta correta?

an=100
a1=2
n=100
r=2

a100=2+(100-1).2
a100=2+99.2
a100=2+198
a100=200


Ache o sexagésimo numero impar.
Resposta correta?

an=69
a1=1
n=69
r=2

a69=1+(69-1).2
a69=1+68.2
a69=1+136
a69=137
Carlos NI
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Abr 18, 2009 20:53
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão aritimetica

Mensagempor Molina » Qui Abr 23, 2009 00:42

Boa noite, Carlos.

Só um detalhe: sexagésimo = 60º.
Logo n = 60.

Do resto tá tudo certo.
Só faça as devidas alterações na segunda PA.

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.