por 380625 » Qui Set 29, 2011 22:49
Ola queria saber um bom programa para iniciantes para fazer graficos de funçoes ou graficos de algumas somas parciais de uma série. Na internet tem varias opções mas queria uma indicação de alguem que ja usou ou conhece algum bom.
Flávio Santana
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Qui Set 29, 2011 23:19
380625 escreveu:Ola queria saber um bom programa para iniciantes para fazer graficos de funçoes ou graficos de algumas somas parciais de uma série.
Experimente o GeoGebra. A página oficial é:
http://www.geogebra.org/Se desejar, em meu canal há um tutorial sobre esse programa:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por 380625 » Qui Out 06, 2011 03:38
Ola gostei muito do seu canal no youtube sobre o Geogebra. Quero mostrar atravez do programa o fenômeno de Gibbs, porem não consigo expressar no programa a sequencia das somas parcias da função abaixo

Queria saber se tem como fazer isso.
Grato.
Flávio Santana.
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Qui Out 06, 2011 10:25
380625 escreveu:Ola gostei muito do seu canal no youtube sobre o Geogebra.
Obrigado.

380625 escreveu:Quero mostrar atravez do programa o fenômeno de Gibbs, porem não consigo expressar no programa a sequencia das somas parcias da função abaixo

Obviamente, uma solução é você abrir a soma e escrever a função sem utilizar a notação de somatório. Entretanto, isso não é muito prático.
Uma solução mais adequada é inserir no campo de entrada o seguinte comando:
- Código: Selecionar todos
f(x) = Soma[Sequência[(2/pi)*(1 - ((-1)^n)*sin(n*x))/n, n, 1, 5]]
Pronto! Irá aparecer na janela o gráfico da função.
Se quiser deixar ainda mais interessante a construção, você pode variar o número de termos da soma através de um seletor. Para criar um seletor utilize a ferramenta indicada na figura abaixo.

- destaque_seletor.jpg (25.75 KiB) Exibido 4677 vezes
Digamos que você escolha o nome do seletor como sendo
k. Configure o mínimo, o máximo e o incremento desejado (por exemplo, 1, 10 e 1 respectivamente). Agora, apague a construção anterior e insira no campo de entrada o seguinte comando:
- Código: Selecionar todos
f(x) = Soma[Sequência[(2/pi)*(1 - ((-1)^n)*sin(n*x))/n, n, 1, k]]
Pronto! Agora basta variar o seletor e automaticamente o gráfico da função f será alterado.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por 380625 » Qui Out 06, 2011 11:11
Eu tenho essa função

.
Calculando a Série de Fourier chegamos em f(x) (aquela que te mandei no outro email).
O que quero fazer é mostrar que as somas parcias de f(x) (dado no outro email) se aproxima dessa função cada vez que somo n termos.
No programa da a função perfeitamente mas não consigo mostrar que cada soma parcial de f(x) (outro email )se aproxima dessa f(x).
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Qui Out 06, 2011 11:28
380625 escreveu:Eu tenho essa função

Calculando a Série de Fourier chegamos em f(x) (aquela que te mandei no outro email).
Você calculou errado. A função enviada anteriormente não corresponde a Série de Fourier desta função que você enviou agora.
380625 escreveu:O que quero fazer é mostrar que as somas parcias de f(x) (dado no outro email) se aproxima dessa função cada vez que somo n termos.
No programa da a função perfeitamente mas não consigo mostrar que cada soma parcial de f(x) (outro email )se aproxima dessa f(x).
Você não vai conseguir isso, já que o cálculo daquela soma está errado. Reveja os seus cálculos.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por 380625 » Qui Out 06, 2011 12:04
A função que eu mandei agora f(x)= -1, -pi<x<0 e 1, 0<=x<pi, tem serie de Fourier dada por:

, eu conferi e olhei no livro poi este é um exemplo do Zill pagina 215.
So quero colocar no programa a função e a serie de fourier e mostrar que cada vez que somo um termo da sequencia das somas parcias da serie de fourier ela se comporta de tal maneira.
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Qui Out 06, 2011 16:43
A
Série de Fourier para

tem o formato:
![f(x) = \frac{2}{\pi} \sum_{n = 1}^{\infty} \frac{[1 - (-1)^n]\,\textrm{sen}\,(nx)}{n} f(x) = \frac{2}{\pi} \sum_{n = 1}^{\infty} \frac{[1 - (-1)^n]\,\textrm{sen}\,(nx)}{n}](/latexrender/pictures/aa93932448fdf307ac5b2dd76dbce2aa.png)
Agora veja o que você está escrevendo:
380625 escreveu:
Tente perceber onde está o seu erro.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Software de analise de gráficos] Digitalização de gráficos
por Adam Brave » Sáb Jul 12, 2014 21:28
- 0 Respostas
- 2320 Exibições
- Última mensagem por Adam Brave

Sáb Jul 12, 2014 21:28
Funções
-
- Gráficos
por GabyRitter » Qua Jun 24, 2009 22:58
- 1 Respostas
- 1666 Exibições
- Última mensagem por Marcampucio

Qua Jun 24, 2009 23:43
Trigonometria
-
- graficos
por ssousa3 » Sáb Abr 02, 2011 16:50
- 3 Respostas
- 2483 Exibições
- Última mensagem por ssousa3

Dom Abr 03, 2011 20:51
Funções
-
- Função log - gráficos
por jamiel » Qua Jun 15, 2011 15:24
- 0 Respostas
- 1194 Exibições
- Última mensagem por jamiel

Qua Jun 15, 2011 15:24
Funções
-
- Esboço de gráficos.
por matematicouff » Sex Jun 22, 2012 19:02
- 1 Respostas
- 1497 Exibições
- Última mensagem por MarceloFantini

Dom Jun 24, 2012 02:09
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.