• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gráficos.

Gráficos.

Mensagempor 380625 » Qui Set 29, 2011 22:49

Ola queria saber um bom programa para iniciantes para fazer graficos de funçoes ou graficos de algumas somas parciais de uma série. Na internet tem varias opções mas queria uma indicação de alguem que ja usou ou conhece algum bom.

Flávio Santana
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Gráficos.

Mensagempor LuizAquino » Qui Set 29, 2011 23:19

380625 escreveu:Ola queria saber um bom programa para iniciantes para fazer graficos de funçoes ou graficos de algumas somas parciais de uma série.

Experimente o GeoGebra. A página oficial é:

http://www.geogebra.org/

Se desejar, em meu canal há um tutorial sobre esse programa:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Gráficos.

Mensagempor 380625 » Qui Out 06, 2011 03:38

Ola gostei muito do seu canal no youtube sobre o Geogebra. Quero mostrar atravez do programa o fenômeno de Gibbs, porem não consigo expressar no programa a sequencia das somas parcias da função abaixo


f(x)=2/\pi\sum_{n=1}^\15\frac{1-(-1)^n sen\ nx}{n}

Queria saber se tem como fazer isso.

Grato.

Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Gráficos.

Mensagempor LuizAquino » Qui Out 06, 2011 10:25

380625 escreveu:Ola gostei muito do seu canal no youtube sobre o Geogebra.

Obrigado. :y:

380625 escreveu:Quero mostrar atravez do programa o fenômeno de Gibbs, porem não consigo expressar no programa a sequencia das somas parcias da função abaixo

f(x)=2/\pi\sum_{n=1}^\15\frac{1-(-1)^n sen\ nx}{n}


Obviamente, uma solução é você abrir a soma e escrever a função sem utilizar a notação de somatório. Entretanto, isso não é muito prático.

Uma solução mais adequada é inserir no campo de entrada o seguinte comando:

Código: Selecionar todos
f(x) = Soma[Sequência[(2/pi)*(1 - ((-1)^n)*sin(n*x))/n, n, 1, 5]]


Pronto! Irá aparecer na janela o gráfico da função.

Se quiser deixar ainda mais interessante a construção, você pode variar o número de termos da soma através de um seletor. Para criar um seletor utilize a ferramenta indicada na figura abaixo.

destaque_seletor.jpg
destaque_seletor.jpg (25.75 KiB) Exibido 4677 vezes


Digamos que você escolha o nome do seletor como sendo k. Configure o mínimo, o máximo e o incremento desejado (por exemplo, 1, 10 e 1 respectivamente). Agora, apague a construção anterior e insira no campo de entrada o seguinte comando:

Código: Selecionar todos
f(x) = Soma[Sequência[(2/pi)*(1 - ((-1)^n)*sin(n*x))/n, n, 1, k]]


Pronto! Agora basta variar o seletor e automaticamente o gráfico da função f será alterado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Gráficos.

Mensagempor 380625 » Qui Out 06, 2011 11:11

Eu tenho essa função

f(x)= - 1, -\pi<x<o
1, 0\leq\ x <\pi.

Calculando a Série de Fourier chegamos em f(x) (aquela que te mandei no outro email).

O que quero fazer é mostrar que as somas parcias de f(x) (dado no outro email) se aproxima dessa função cada vez que somo n termos.

No programa da a função perfeitamente mas não consigo mostrar que cada soma parcial de f(x) (outro email )se aproxima dessa f(x).
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Gráficos.

Mensagempor LuizAquino » Qui Out 06, 2011 11:28

380625 escreveu:Eu tenho essa função

f(x) = \begin{cases}
-1,\, -\pi < x < 0 \\
1, \, 0 \leq \ x < \pi
\end{cases}

Calculando a Série de Fourier chegamos em f(x) (aquela que te mandei no outro email).

Você calculou errado. A função enviada anteriormente não corresponde a Série de Fourier desta função que você enviou agora.

380625 escreveu:O que quero fazer é mostrar que as somas parcias de f(x) (dado no outro email) se aproxima dessa função cada vez que somo n termos.

No programa da a função perfeitamente mas não consigo mostrar que cada soma parcial de f(x) (outro email )se aproxima dessa f(x).


Você não vai conseguir isso, já que o cálculo daquela soma está errado. Reveja os seus cálculos.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Gráficos.

Mensagempor 380625 » Qui Out 06, 2011 12:04

A função que eu mandei agora f(x)= -1, -pi<x<0 e 1, 0<=x<pi, tem serie de Fourier dada por:


f(x)=2/\pi\sum_{n=1}^\infty\frac{1-(-1)^n sen(nx)}{n}, eu conferi e olhei no livro poi este é um exemplo do Zill pagina 215.

So quero colocar no programa a função e a serie de fourier e mostrar que cada vez que somo um termo da sequencia das somas parcias da serie de fourier ela se comporta de tal maneira.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Gráficos.

Mensagempor LuizAquino » Qui Out 06, 2011 16:43

A Série de Fourier para f(x) = \begin{cases} -1,\, -\pi < x < 0 \\ 1, \, 0 \leq \ x < \pi \end{cases} tem o formato:

f(x) = \frac{2}{\pi} \sum_{n = 1}^{\infty} \frac{[1 - (-1)^n]\,\textrm{sen}\,(nx)}{n}

Agora veja o que você está escrevendo:

380625 escreveu:f(x)=2/\pi\sum_{n=1}^\infty\frac{1-(-1)^n sen(nx)}{n}


Tente perceber onde está o seu erro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D