por Biliyorum » Qua Out 05, 2011 16:01
"No trapézio GHIJ (imagem 3), se a distância entre
os jogadores das posições G e H for de 20 metros (os lados)
e a medida do ângulo H?J for 40°, então a altura do
trapézio GHIJ será, em metros."

- imagem 3.jpg (13.16 KiB) Exibido 1578 vezes
Imagem com as medidas:
Adote
sen 40° = 0,64
cos 40° = 0,77
tg 40° = 0,84
Taí todo o enunciado. Fazendo h=20*sen40º= 20*0,64= 12,8 m, encontrei a resposta. Mas antes eu multipliquei o cos e a tg pelo 20 para ver o que dava, e deu a resposta errada, claro. Eu quero saber quando é que se usa o cos, tg e sen para estes e outros cálculos; para usar cada um depende do quê?
É isso.
-
Biliyorum
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Out 05, 2011 15:30
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- trapézio isósceles
por bomfranco » Sex Set 25, 2015 00:20
- 1 Respostas
- 1509 Exibições
- Última mensagem por bomfranco

Sex Set 25, 2015 14:41
Geometria Plana
-
- Cálculo da altura do trapézio
por dandara » Sex Jan 30, 2015 16:59
- 1 Respostas
- 1469 Exibições
- Última mensagem por DanielFerreira

Sex Jan 30, 2015 22:46
Geometria Plana
-
- Altura do trapézio igual ao diâmetro da circunferencia ?
por gustavoluiss » Ter Dez 14, 2010 07:12
- 1 Respostas
- 2142 Exibições
- Última mensagem por MarceloFantini

Ter Dez 14, 2010 13:49
Geometria Analítica
-
- [Geometria Plana] Triângulos isósceles
por DaviBahia » Sex Mar 22, 2013 13:23
- 2 Respostas
- 2736 Exibições
- Última mensagem por DaviBahia

Sáb Mar 23, 2013 06:16
Geometria Plana
-
- [Geometria Plana - Triângulo Isósceles] Baricentro
por raimundoocjr » Seg Jan 28, 2013 15:31
- 5 Respostas
- 4453 Exibições
- Última mensagem por raimundoocjr

Seg Jan 28, 2013 19:38
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.