• Anúncio Global
    Respostas
    Exibições
    Última mensagem

valores de a e b para todo x real, como calcular

valores de a e b para todo x real, como calcular

Mensagempor bira19 » Ter Out 04, 2011 21:25

{x}^{3}+1=\left(x+1 \right)\left({x}^{2}+ax+b \right)
bira19
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 03, 2011 20:41
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletronica
Andamento: formado

Re: valores de a e b para todo x real, como calcular

Mensagempor MarceloFantini » Ter Out 04, 2011 21:50

Aplique a distributiva do lado direito e fala igualdade de coeficientes, lembrando que x^3 +1 = x^3 +0x^2 +0x +1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: valores de a e b para todo x real, como calcular

Mensagempor bira19 » Ter Out 04, 2011 22:13

MarceloFantini escreveu:Aplique a distributiva do lado direito e fala igualdade de coeficientes, lembrando que x^3 +1 = x^3 +0x^2 +0x +1.


aplicandoa distributiva {x}^{3}+1={x}^{3}+a{x}^{2}+bx+{x}^{2}+ax+b, minha duvida e como somar os termos para desmonstrar a igualdade.
bira19
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 03, 2011 20:41
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletronica
Andamento: formado

Re: valores de a e b para todo x real, como calcular

Mensagempor MarceloFantini » Ter Out 04, 2011 22:21

Basta juntar para formar um polinômio: x^3+(a +1)x^2 +(a+b)x +b e iguale os coeficientes.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: valores de a e b para todo x real, como calcular

Mensagempor bira19 » Ter Out 04, 2011 22:43

MarceloFantini escreveu:Basta juntar para formar um polinômio: x^3+(a +1)x^2 +(a+b)x +b e iguale os coeficientes.


Obrigado, igualando os coeficientes encontrei a=-1  e b=1
bira19
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 03, 2011 20:41
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletronica
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59