• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida em Questão de (EDO)

Duvida em Questão de (EDO)

Mensagempor sys_ » Sex Abr 10, 2009 19:06

1 - Dê a ordem da EDO e verifique se a função dada é solução A e B constantes

y'' - y = 0; y=(A).(e^-l) + (B).(e^x)

Minha solução 2º Ordem
e
y'=-A(e^-l) + Be^x
y''=A(e^-l) + Be^x

logo
-A(e^-l) + Be^x + A(e^-l) + Be^x = 0
é solução.
esta certa?

Resolva as equações a seguir:

a)y'=3x^2
sys_
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Abr 10, 2009 14:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência Computação
Andamento: cursando

Re: Duvida em Questão de (EDO)

Mensagempor Molina » Sáb Abr 11, 2009 04:38

Boa noite, sys.

Infelizmente nao vou poder lhe ajudar nessa questão como gostaria.
O que eu posso sugerir é ler http://pessoal.sercomtel.com.br/matemat ... do2ord.htm e verificar algumas propriedades que são passadas lá.
To lendo também e caso tenha alguma curiosidade coloco aqui.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Duvida em Questão de (EDO)

Mensagempor nakagumahissao » Seg Ago 17, 2015 13:04

A primeira está completamente correta.

A segunda se resolve da seguinte forma:

a)y'=3x^2

y´ = \frac{dy}{dx} = 3x^2

dy = 3x^2 dx

\int dy = \int 3x^2 dx

y = \frac{3x^3}{3} + C \Leftrightarrow y = x^3 + C

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59