• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor gabrielspadon » Sex Set 16, 2011 11:55

Como calculo esse limite?

\lim_{x \to \ 5} \frac {\sqrt[2]{x} - \sqrt[2]{5}}{\sqrt[2]{x+5} - \sqrt[2]{10}}
gabrielspadon
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Jul 02, 2011 22:10
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limite

Mensagempor Aliocha Karamazov » Sex Set 16, 2011 16:38

Comece multiplicando, no numerador e no denominador, pelos conjugados de ambos.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Limite

Mensagempor Anne2011 » Sex Set 16, 2011 17:23

\lim_{x\rightarrow5}\frac{\sqrt[2]{x}-\sqrt[2]{5}}{\sqrt[2]{x+5}-\sqrt[2]{10}}

Tirando da raiz fica assim:

\lim_{x\rightarrow5}\frac{{x}^{\frac{2}{2}-{5}^{\frac{2}{2}}}}{{(x+5)}^{\frac{2}{2}}-{10}^{\frac{2}{2}}}}

Sendo assim eaplicando o limite:

\frac{x-5}{(x+5)-10}=\frac{0}{0}=0
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor Anne2011 » Sex Set 16, 2011 17:27

O -5 da segunda equação não é expoente, não estou muito familiarizada com o látex... :$
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Sex Set 16, 2011 17:36

Anne, isto que você fez está errado, não faz sentido e não é a dica de Aliocha. Multiplique numerador e denominador por \frac{(\sqrt{x} + \sqrt{5})(\sqrt{x+5} + \sqrt{10})}{(\sqrt{x} + \sqrt{5})(\sqrt{x+5} + \sqrt{10})}, faça algumas distributivas e veja o que acontece.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Anne2011 » Sex Set 16, 2011 17:57

Ops, tens razão... Pera q vou tentar de novo...
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor Anne2011 » Sex Set 16, 2011 18:22

Fiz aqui e deu indeterminação... Calculo o slimites laterais? (não lembro mais :$ )
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Sex Set 16, 2011 18:30

Vamos ver.

\lim_{x \to 5} \frac{\sqrt{x} - \sqrt{5}}{\sqrt{x+5} - \sqrt{10}} \cdot \frac{(\sqrt{x} + \sqrt{5})(\sqrt{x+5} + \sqrt{10})}{(\sqrt{x} + \sqrt{5})(\sqrt{x+5} + \sqrt{10})} = \lim_{x \to 5} \frac{(x-5)(\sqrt{x+5} + \sqrt{10})}{(x+5-10)(\sqrt{x} + \sqrt{5})} =

= \lim_{x \to 5} \frac{\sqrt{x+5} + \sqrt{10}}{\sqrt{x} + \sqrt{5}} = \frac{2 \sqrt{10}}{2 \sqrt{5}} = \sqrt{2}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Anne2011 » Sex Set 16, 2011 18:40

Fantini, agora fiz assim:

\lim_{x\rightarrow5}\frac{\sqrt[2]{x}-\sqrt[2]{5}}{\sqrt[2]{(x+5)}-\sqrt[2]{10}}

\lim_{x\rightarrow5}{\left(\frac{\sqrt[2]{x}-\sqrt[2]{5}}{\sqrt[2]{(x+5)-\sqrt[2]{10}}} \right)}^{2}.{\left(\frac{\sqrt[2]{(x+5)+\sqrt[2]{10}}}{\sqrt[2]{(x+5)+\sqrt[2]{10}}} \right)}^{2}

Agora sim, cortando as raizes fica:

\frac{(x-5).(x+5+10)}{(x+5-10).(x+5+10)}=\frac{(x-5)}{(x-5)}=\frac{0}{0}

E agora?
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor Anne2011 » Sex Set 16, 2011 18:43

Hunm... Tô vendo que terei que rever essa materia... :!:
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Sex Set 16, 2011 18:44

O que você fez está errado no sentido de que você calculou para outra função (e errado também). Verifique minha resolução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Anne2011 » Sex Set 16, 2011 18:59

Ok. :y:
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sáb Set 17, 2011 10:39

Anne2011 escreveu:Hunm... Tô vendo que terei que rever essa materia... :!:

Se precisar, então veja se as vídeo-aulas em meu canal podem lhe ajudar:
http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Anne2011 » Sáb Set 17, 2011 15:01

Tenho tds os seus vídeos... me ajudando sempre :) Agora to vendo os de integrais, tenho prova essa semana e tô apanhando muito pra resolver...
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sáb Set 17, 2011 18:35

Anne2011 escreveu:Tenho tds os seus vídeos... me ajudando sempre :)

:y: :-D
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor gabrielspadon » Sáb Set 17, 2011 19:04

Marcelo Fantini, na sua resolução, porque você não aplicou a distributiva tambem na ultima expressão? E porque o sinal das expressões se inverteram?
gabrielspadon
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Jul 02, 2011 22:10
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Sáb Set 17, 2011 19:26

Não apliquei a distributiva pois não era conveniente. Não me ajudaria a perceber que fator se cancelaria, e pelo jeito que a questão foi formulada estava claro que precisava fazer aparecer x-5 no numerador e denominador para cancelar. Que sinal se inverteu? Lembre-se do produto notável a^2 -b^2 = (a-b)(a+b). Neste caso, no numerador por exemplo temos a= \sqrt{x} e b=\sqrt{5}, e assim (\sqrt{x} - \sqrt{5})(\sqrt{x} + \sqrt{5}) = (\sqrt{x})^2 - (\sqrt{5})^2 = x - 5.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D