por DELTAPI » Sex Set 16, 2011 14:56
Alguem poderia me auxiliar a montar este sistema de equações:
Joana foi à feira levando certa quantia em dinheiro. Na 1.ª banca, comprou legumes e gastou 1/4 dessa quantia. Na 2.ª banca, comprou verduras e gastou 2/5 do valor gasto na 1.ª banca. Na 3.ª banca, comprou frutas e gastou R$ 15,50. Sabendo-se que da quantia inicial restaram R$ 10,50, conclui-se que na compra de verduras ela gastou?
x= valor de dinheiro qeu levou
1ª Banca = x-(1/4x)
2ª Banca = 2/5 (x -1/4x)
3ª banca = R$15,50
sobrou RS10,50
Montei a equação da seguinte forma mas não deu o resultado proposto: alguem pode indicar onde eu errei?
x-(1/4x)-2/5(x-1/4)-15,50=10,50
-
DELTAPI
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Set 06, 2011 08:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Neperiano » Sex Set 16, 2011 15:25
Ola
Transforme esse 1/4 em 0,25
Logo na 1 banca gastou 0,25
Na 2 banca gastou 2/5 de 0,25 que é 0,1 (só fazer 0,25 vezes 2 e dividido por 5)
Na 3 banca gastou 15,50
Sobrou 10,50 de tudo entao
Ela tinha 15,50+10,50=26 reais mais 0,35
Então
26 - 1
x - 0,35
Logo 9,1
Então ela tinha 26+9,1= 35,1 reais
Acho que é isso
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por DELTAPI » Sáb Set 17, 2011 10:12
PESSOAL, MUITO OBRIGADO.
NA SEGUNDA BANCA ELE GASTOU R$4,00 ( Q/10 =>R$4,00).
CASO CONHEÇAM ALGUM LIVRO QUE ENSINA COMO MONTAR AS EQUAÇÕES, FAVOR ME INDICAR.
-
DELTAPI
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Set 06, 2011 08:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4348 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- [Equações] dúvidas
por DELTAPI » Ter Set 06, 2011 08:38
- 4 Respostas
- 1991 Exibições
- Última mensagem por DELTAPI

Sex Set 09, 2011 08:36
Sistemas de Equações
-
- [Equações Diferenciais Ordinárias e Aplicações]Duvidas
por pdss » Qua Dez 07, 2011 17:56
- 1 Respostas
- 1892 Exibições
- Última mensagem por LuizAquino

Qua Dez 07, 2011 20:14
Cálculo: Limites, Derivadas e Integrais
-
- Duvidas sobre equações pares e impares
por Ricley » Qui Nov 02, 2017 00:13
- 0 Respostas
- 5036 Exibições
- Última mensagem por Ricley

Qui Nov 02, 2017 00:13
Cálculo: Limites, Derivadas e Integrais
-
- Sistema de equações
por Cleyson007 » Sex Set 12, 2008 12:47
- 6 Respostas
- 5348 Exibições
- Última mensagem por Cleyson007

Qua Jun 03, 2009 17:25
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.