• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor thiago toledo » Qua Set 14, 2011 12:47

Achar, caso existam, os pontos de Máximo Relativo, Mínimo Relativo e de Inflexão Horizontal da função definida por:

f(x)=\frac{{x}^{4}}{4}+\frac{{x}^{3}}{3}-{3x}^{2}+77
Editado pela última vez por thiago toledo em Qui Set 15, 2011 16:57, em um total de 2 vezes.
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor MarceloFantini » Qua Set 14, 2011 14:01

Derive uma vez, iguale a zero e resolva para encontrar os pontos de máximo e mínimo da função. Em seguida, calcule a segunda derivada e iguale a zero novamente para encontrar os pontos de inflexão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Derivada]

Mensagempor LuizAquino » Qua Set 14, 2011 17:06

Thiago Toledo,

Eu recomendo que você assista as vídeo-aulas "21. Cálculo I - Teste da Primeira e da Segunda Derivada " e "22. Cálculo I - Construção de Gráficos".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada]

Mensagempor thiago toledo » Qui Set 15, 2011 16:58

Com a ajuda dos videos do prof. Aquino eu encontrei:

- Pontos criticos (0, 2, -3)

- Pelo teste de derivadas a segunda encontrei:

f''(0) = -6 ----> Ponto Maximo

f''(-3) = 15 ----> Ponto Minimo

Esta correto??

Só que para encontrar os pontos de inflexão horizontal eu não entendi como fazer. O que eu devo fazer para encontrar os pontos de inflexão horizontal?
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Qui Set 15, 2011 21:28

thiago toledo escreveu:- Pontos criticos (0, 2, -3)

Ok.

thiago toledo escreveu:f''(0) = -6 ----> Ponto Maximo

f''(-3) = 15 ----> Ponto Minimo

Ok. Mas por que você também não calculou f''(2)?

thiago toledo escreveu:Só que para encontrar os pontos de inflexão horizontal eu não entendi como fazer. O que eu devo fazer para encontrar os pontos de inflexão horizontal?

Veja a definição de ponto de inflexão horizontal:
Ponto de inflexão horizontal
http://pessoal.sercomtel.com.br/matemat ... .htm#mxm04

Após entender a definição tente resolver o exercício. Caso ainda fique com dúvida, então poste aqui até onde você conseguiu avançar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}