por vanessafey » Qua Set 07, 2011 21:49
Preciso verificar geometricamente e ilustrar graficamente com exemplos as seguintes propriedades do determinante para matrizes 2X2 e 3X3:
(i) Se B é uma matriz obtida a partir de A multiplicando uma linha de A por um escalar ?>0; então

Segue o raciocínio...
Para matrizes R^2xR^2

[/tex]
Note que a primeira linha de B é o dobro da primeira linha de A.
|det(B)|=|6-8|=2
|det(A)|=|3-4|=1
Assim, |det(B)|=2|det(A)|
Geometricamente, significa que a área do paralelogramo formada pelos vetores

dobrou, pois o vetor u dobrou o comprimento. Ou seja, se uma linha (ou coluna) de uma matriz foi multiplicada por uma constante positiva ?, seu determinante também fica multiplicado por essa constante.
O significado geométrico para matrizes 2X2, é que a área do paralelogramo formada por seus vetores coluna (ou linha) fica multiplicado por essa constante ?.
SERIA ISSO???
-
vanessafey
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Jun 24, 2011 13:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sáb Set 10, 2011 12:51
vanessafey escreveu:O significado geométrico para matrizes 2X2, é que a área do paralelogramo formada por seus vetores coluna (ou linha) fica multiplicado por essa constante ?.
Sim.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- propriedades de raiz
por theSinister » Ter Jun 21, 2011 22:04
- 10 Respostas
- 6278 Exibições
- Última mensagem por theSinister

Qua Jun 22, 2011 16:16
Álgebra Elementar
-
- propriedades dos radicais
por beatriz gomes » Qua Set 07, 2011 20:11
- 1 Respostas
- 2263 Exibições
- Última mensagem por MarceloFantini

Qua Set 07, 2011 21:02
Álgebra Elementar
-
- Propriedades dos determinates
por panicox » Sex Set 14, 2018 02:31
- 3 Respostas
- 12239 Exibições
- Última mensagem por Gebe

Sex Set 14, 2018 13:46
Matrizes e Determinantes
-
- Potenciação Propriedades
por anneliesero » Seg Out 01, 2012 17:24
- 1 Respostas
- 1823 Exibições
- Última mensagem por Cleyson007

Seg Out 01, 2012 18:29
Álgebra Elementar
-
- Propriedades do Produtório
por Jhenrique » Qui Jan 17, 2013 09:07
- 1 Respostas
- 3984 Exibições
- Última mensagem por Russman

Qui Jan 17, 2013 17:42
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.