• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida no determinante

Duvida no determinante

Mensagempor Angelica Abdalla » Dom Set 04, 2011 23:09

A questão é a seguinte:
Verifcar geometricamente e ilustrar graficamente com exemplos as seguintes propriedades do determinante para matrizes
2 x 2 e 3 x 3:
(i) Se B é uma matriz obtida a partir de A multiplicando uma linha de A por um \alpha escalar > 0; então jdet(B)j = ®jdet(A)j
(ii) Se em uma matriz A uma linha pode ser escrita como uma combinação linear das outras, então det(A) = 0. (No caso 2x2 um vetor será múltiplo do outro. No caso 3 x 3, note que um vetor estará no plano gerado pelos outros dois, o que, visualmente, resultará em um sólido com volume igual a zero).
Resolução:
Definição: O determinante de uma matriz quadrada A=[a_ij ]é definido como:
det??A=?_p???(-1)?^J a_(1j_1 ) a_(2j_2 )…a_(nj_n ) ?,?
Onde J=J(j_1,j_2,…,j_n)é o número de inversões da permutação (j_1,j_2,…,j_n) e p indica que a soma ocorre sobre todas as permutações de (1,2,...,n) (existem n! permutações).
Podemos fazer as seguintes observações com relação a essa definição.
Obs.: (i) Em cada termo do somatório, existe um e apenas um elemento de cada linha e um, e apenas um, elemento de cada coluna da matriz:
(ii) O determinante também pode ser definido através da fórmula
det??A=?_p??(-1)^J a_(j_1 ) a_(j_2 )…a_(j_n n) ??
Propriedade 3) Se a linha de uma matriz é multiplicada por uma constante, o determinante fica multiplicado por esta constante.
Dem.: Segue-se imediatamente da observação (i).
Exemplo: |?(ka&kb@c&d)|=kad-kbc=k(ad-bc)=k|?(a&b@c&d)|
Ou Seja:
Se A=|?(1&2@3&4)|=4-6=-2
Sendo ?=2 o escalar escolhido para multiplicar a primeira linha de A formando assim a matriz:
B=|?(2.1&2.2@3&4)|8-12=-4
Como 2.(-2)=-4 fica provada a primeira propriedade.
ESTOU NO CAMINHO CERTO,
AGUARDO AJUDA OBRIGADA
Angelica Abdalla
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 22:48
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.