• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função - função dentro de função

Função - função dentro de função

Mensagempor jamiel » Qua Ago 31, 2011 20:08

Um corpo de massa m é atraído, quando colocado na superfície da Terra, por uma força gravitacional de intensidade F. Determine a intensidade da força gravitacional sobreesse corpo quando levado para a superfície de um planeta de forma esférica cuja massa é oito vezes maior que a da Terra e cujo raio é quatro vezes maior que o terrestre.

Terra --> F = \left(G * \left(\frac{M * m}{{R}^{2}} \right) \right)

'M = 8M e R' = 4R

'F = \left(G * \left(\frac{8M * m}{{4d}^{2}} \right) \right)

\left( 'F = \left(G * \left(\frac{8M * m}{{\left( 16\right)d}^{2}} \right) \right)\right)

Daí não consigo sair, no gabarito tem F' = F/2. Alguém para ajudar nessa?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - função dentro de função

Mensagempor Caradoc » Sáb Set 03, 2011 23:51

Acho que você se confundiu ao colocar o d ali no meio. Estava praticamente na resposta.

M' = 8M e R' = 4R

F' = \left(G * \left(\frac{8M * m}{{(4R)}^{2}} \right) \right)

F' = \left(G * \left(\frac{8M * m}{{16R^2}} \right) \right)

F' = \left(G * \left(\frac{8}{{16}} \right)\left(\frac{M * m}{{R^2}} \right) \right)

F' = \frac{1}{2}\left(G *\left(\frac{M * m}{{R^2}} \right) \right)

F'= \frac{1}{2}F

Entendido?
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Função - função dentro de função

Mensagempor jamiel » Dom Set 04, 2011 01:20

rrsrr

Eu consegui resolver já, mas valeu mesmo, de qualquer forma. Às vezes eu dou cada pisada na bola me perdendo em questões fáceis!

F/2 = óbvio, não é? Mas é assim mesmo. Thank you again!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}