• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algebra (Anéis)

Algebra (Anéis)

Mensagempor vivi » Sáb Set 03, 2011 19:05

Olá tenho a seguinte questão relativa a anel para responder:


1) Seja A = 1 + 2Z o conjunto dos números inteiros ímpares, isto é,
A = {x ?Z;x=2k+1,k?z}
a) Verifique que A não é anel com as operações a *b = a + b + 1 e a?b = ab .
(Você deve identificar um axioma que não valha e daí apresentar um contra-exemplo
para esse axioma).

Na questão a verifiquei até o quarto axioma. No terceiro axioma verifiquei a existência do elemento Neutro da seguinte forma:

a *0=a

a+0+1=a

0=-1 ( sendo 0 zero relativo ao conjunto A)

E verificando o a existência do simétrico cheguei em:

b * y=-1

b+y+1=-1

y=-2-b

E testando para um número qualquer do conjunto Ex: 5

-2-5+5=-2

o que cai em uma contradição,pois, nosso elemento neutro seria -1.

Pessoal o que vcs acham??? Será que é isso? To meia perdida, pois, ta tão dificíl...

No aguardo,
vivi
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 26, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Algebra (Anéis)

Mensagempor vivi » Sáb Set 03, 2011 20:16

Olá ... eu de novo...um amigo me indicou um erro esqueci de acrescentar o +1 solicitado na operação e com isso consigo provar o simétrico. Continuei testando os axiomas e quando chegou no sexto e último axioma percebi testando com números que:
1(3+5)=3+5=8

e

(1+3)5=5+15=20

Ou seja, acho que gostaria de chegar aí, porém preciso provar formalmente e gostaria de saber se esta correto provar deste jeito:


a?(b*c)=a?(a=c=1)=a(a+c+1=a(a+c+1)-1=a^2+ac+a+1
?
(a*b)?c=(a+b+1)?c=(a=b=1)c+1=ac+bc+c+1


Poderiam me ajudar???

Grata
vivi
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 26, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.