por ByRobert » Qui Set 01, 2011 12:59
Boa tarde.
É possivel achar o valor de um angulo sabendo o seno,cosseno e tangente deste angulo? como ?
Após isso, Com o valor de um angulo e de um cateto, é possivel achar o valor de outro cateto? como?
obrigado.
-
ByRobert
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Set 01, 2011 12:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: formado
por Neperiano » Qui Set 01, 2011 15:16
Ola
Claro que sim
Se você sabe que tang alfa = 50
Voce tenque calcular alfa, usando a inversa da tangente, representada por tang^-1
Nas calculadores cientificas tem
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por ByRobert » Qui Set 01, 2011 19:22
Mas qual a formula pra resolver este problema na mão ?
-
ByRobert
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Set 01, 2011 12:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: formado
por Neperiano » Qui Set 01, 2011 19:50
Ola
Cara a mão pra tangente não sei faze, sei que pra inversa de seno, se usa 1/cos
Para tangente = seno/cosseno, então tang-1 que é cotangente é cosseno/seno, mas tente fazer e não deu, então usa uma calculadora que é mais fácil, xd
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por MarceloFantini » Qui Set 01, 2011 19:58
A maneira de calcular um ângulo qualquer dado uma função trigonométrica dele é trabalhosa demais para ser feita na mão, inclusive não sei o método e acredito que seja um pouco complicado de se encontrar. O mais prático é sempre encontrar uma calculadora científica e usar a função inversa.
Neperiano, tome cuidado com o que você diz. A função

é diferente de

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Neperiano » Qui Set 01, 2011 20:04
Ola
Ops, tem razão, tenho que aprender a escrever com latex, para não me complicar
Obrigado
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por LuizAquino » Qui Set 01, 2011 21:24
MarceloFantini escreveu:A maneira de calcular um ângulo qualquer dado uma função trigonométrica dele é trabalhosa demais para ser feita na mão, inclusive não sei o método e acredito que seja um pouco complicado de se encontrar.
O
Método de Newton pode ser usado para resolver esse problema.
Vejam a discussão no tópico:
Como calcular tangente a menos 1viewtopic.php?f=109&t=4390Apenas por curiosidade, muito antes da popularização das calculadoras, o seno, cosseno e tangente dos ângulos eram disponibilizados em tabelas, que eram obtidas através da aplicação de identidades trigonométricas e do conhecimento de alguns ângulos elementares, como por exemplo, 30°, 45° e 60°.
Se desejarem, leiam mais um pouco sobre isso em:
História da trigonometria.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ângulos
por admin » Sex Set 07, 2007 06:42
- 3 Respostas
- 11653 Exibições
- Última mensagem por Numwantida

Qui Mai 24, 2018 05:06
Pérolas
-
- ângulos
por Thays » Sáb Jan 14, 2012 11:59
- 6 Respostas
- 4279 Exibições
- Última mensagem por Thays

Qui Jan 19, 2012 09:36
Geometria Plana
-
- Angulos
por silvia fillet » Sáb Fev 04, 2012 20:13
- 1 Respostas
- 2188 Exibições
- Última mensagem por Arkanus Darondra

Sáb Fev 04, 2012 22:06
Geometria Plana
-
- angulos
por alfabeta » Qui Mar 01, 2012 15:13
- 3 Respostas
- 2594 Exibições
- Última mensagem por timoteo

Sex Mar 02, 2012 01:00
Geometria Plana
-
- [ângulos]
por Ederson_ederson » Qui Jul 02, 2015 08:49
- 3 Respostas
- 3070 Exibições
- Última mensagem por Ederson_ederson

Seg Jul 06, 2015 17:18
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.