• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema: Encontro na Praça.

Seção para postagens de problemas matemáticos do cotidiano, reportagens, casos interessantes, polêmicos ou curiosos.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Problema: Encontro na Praça.

Mensagempor Molina » Qui Mar 12, 2009 00:44

Estou criando um tópico para remanejar a dúvida da nossa amiga Ione:

Nova mensagempor ione silveira em Qua Mar 11, 2009 22:50

BOA NOITE! TANTO TEMPO NÃO PAREÇO POR AQUI.
ESTOU MUITO FELIZ POIS PASSEI NO CONCURSO DA ANTAEL , MAS MATEMÁTICA ME ARASOU..
ESTOU TENTANDO FAZER ESSE EXERCÍCOS MAS,NÃO ESTOU CONSEGUINDO.

UNB - QUATRO PESSOAS SAEM DE UMA PRAÇA A CAMINHA NUMA MESMA HORA. ELAS REPETIRÃO VÁRIAS VEZES O MESMO PERCUSO, E SEUS PERCURSOS DURAM RESPECTIVAMENTE, 5 MIN, 9 MIN, 10 MIN E 15 MIN. APÓS QUANTOS MINUTOS ELAS ESTÃO JUNTAS NA PRAÇA PELA PRIMEIRA VEZ?

RESPOSTA CORRETA - 100

MAS NÃO CONSIGO FAZER..
É PROPORÇÃO?!
TENTEI FAZER A MÉDIA...1/5 + 1/9 + 1/10 + 1/15 = 1/X
FIZ O MMC QUE É 90 ..MAS NÃO É ASSIM , ME DER UMA LUZ!!!OBRIGADA...
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Problema: Encontro na Praça.

Mensagempor Molina » Qui Mar 12, 2009 00:55

Boa noite, Ione.

Acho que você estava no caminho certo.
Fazendo o MMC de 5 MIN, 9 MIN, 10 MIN E 15 MIN encontramos 90 MIN.

Poderíamos analisar da seguinte forma tambem:

5min: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, ...
9min: 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, ...
10min: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, ...
15min: 0, 15, 30, 45, 60, 75, 90, 105, ...

Note que esses valores acima são os tempos que cada pessoa demora pra dar uma volta na praça. Todos iniciaram juntas (tempo = 0min) e só vao se encontrar novamente no depois de 90min, ou 1h30min.

Acredito que o gabarito esteja errado, pois fiz questão de colocar os valores até 100 para voce perceber que por exemplo a que faz o percurso em 9min e a que faz o percurso em 15min não se encontram depois de 100min.

Ficou claro?!

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Problema: Encontro na Praça.

Mensagempor ione silveira » Qui Mar 12, 2009 14:00

OBRIGADA!!! ESSES GABARITOS...DEIXA A GENTE MUTIO INSSEGURO...
ione silveira
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Fev 18, 2008 10:54
Área/Curso: Estudante
Andamento: cursando


Voltar para Problemas do Cotidiano

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D