• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma dos números inteiros que satisfazem a inequação

Soma dos números inteiros que satisfazem a inequação

Mensagempor maria cleide » Sex Ago 26, 2011 22:54

Qual a soma dos números inteiros que satisfazem a inequação (4x-2)(4-x)$\geq$(x-4)^2
Resolvi desta forma:
16x-4x^2-8+2x$\geq$x^2-8x+16
-5x^2+26x-24$\geq$0


Usando Bhaskara:
x=\frac{-26\pm\sqrt{26^2-4(-5)(-24)}}{2(-5)}.
x=\frac{-26\pm\sqrt{676-480}}{-10}.
x=\frac{-26\pm14}{-10}.

X1=1,2
X2=4

Como o primeiro termo da função é negativo, a concavidade da parábola é voltada para baixo e todos os valores da função entre as raízes será positivo. Assim, a soma dos números inteiros que satisfazem a inequação dada é 2+3+4=9. Está certo? Existe alguma outra forma de resolver a inequação?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Soma dos números inteiros que satisfazem a inequação

Mensagempor Molina » Dom Ago 28, 2011 23:11

Boa noite.

Há um erro na passagem do termo -8x da direita para a esquerda. O certo seria:

16x-4x^2-8+2x \geq x^2-8x+16

-5x^2+24x-24 \geq 0


Agora é só prosseguir da mesma maneira :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}