• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma dos números inteiros que satisfazem a inequação

Soma dos números inteiros que satisfazem a inequação

Mensagempor maria cleide » Sex Ago 26, 2011 22:54

Qual a soma dos números inteiros que satisfazem a inequação (4x-2)(4-x)$\geq$(x-4)^2
Resolvi desta forma:
16x-4x^2-8+2x$\geq$x^2-8x+16
-5x^2+26x-24$\geq$0


Usando Bhaskara:
x=\frac{-26\pm\sqrt{26^2-4(-5)(-24)}}{2(-5)}.
x=\frac{-26\pm\sqrt{676-480}}{-10}.
x=\frac{-26\pm14}{-10}.

X1=1,2
X2=4

Como o primeiro termo da função é negativo, a concavidade da parábola é voltada para baixo e todos os valores da função entre as raízes será positivo. Assim, a soma dos números inteiros que satisfazem a inequação dada é 2+3+4=9. Está certo? Existe alguma outra forma de resolver a inequação?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Soma dos números inteiros que satisfazem a inequação

Mensagempor Molina » Dom Ago 28, 2011 23:11

Boa noite.

Há um erro na passagem do termo -8x da direita para a esquerda. O certo seria:

16x-4x^2-8+2x \geq x^2-8x+16

-5x^2+24x-24 \geq 0


Agora é só prosseguir da mesma maneira :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)