• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade para resolver esse sistema.

Dificuldade para resolver esse sistema.

Mensagempor 380625 » Sáb Ago 20, 2011 16:08

Boa tarde queria uma dica para resolver os seguinte exercicio.

1) Determinar os valores de a e b que tornam o sistema

3x - 7y = a
x + y = b
5x + 3y = 5a + 2b
x + 2y = a + b - 1
compativel e determinado. Em seguida resolver o sistema.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Dificuldade para resolver esse sistema.

Mensagempor LuizAquino » Dom Ago 28, 2011 00:32

380625 escreveu:1) Determinar os valores de a e b que tornam o sistema
3x - 7y = a
x + y = b
5x + 3y = 5a + 2b
x + 2y = a + b - 1
compativel e determinado. Em seguida resolver o sistema.


Um sistema é compatível e determinado quando possui apenas uma solução.

Temos o sistema:
\begin{cases}
3x - 7y = a \\
x + y = b \\
5x + 3y = 5a + 2b \\
x + 2y = a + b - 1
\end{cases}

Vamos separar esse sistema em dois:
\begin{cases}
3x - 7y = a \\
x + y = b \\
\end{cases}

\begin{cases}
5x + 3y = 5a + 2b \\
x + 2y = a + b - 1
\end{cases}

Resolvendo esses sistemas em x e y, obtemos:

\begin{cases}
x = \frac{a}{10} + \frac{7b}{10} \\
y = -\frac{a}{10} + \frac{3b}{10}
\end{cases}

\begin{cases}
x = a + \frac{b}{7} + \frac{3}{7}\\
y = \frac{3b}{7} - \frac{5}{7}
\end{cases}

Desejamos que esses dois sistemas possuam a mesma (e única) solução. Desse modo, temos que a e b devem ser tais que:
\begin{cases}
\frac{a}{10} + \frac{7b}{10} = a + \frac{b}{7} + \frac{3}{7}\\
-\frac{a}{10} + \frac{3b}{10} = \frac{3b}{7} - \frac{5}{7}
\end{cases}

Resolvendo esse sistema, você determina a e b. Em seguida, basta substituir esses valores nas soluções de um dos dois sistema e você determina x e y.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)