• Anúncio Global
    Respostas
    Exibições
    Última mensagem

S.O.S. PROBLEMAS DE PORCENTAGEM

S.O.S. PROBLEMAS DE PORCENTAGEM

Mensagempor StheilyAnny » Qui Ago 25, 2011 21:43

Olá, estou estudando pra concursos e tem uns probleminha que estão fritando minha cabeça rsrs esse é um deles:
"Em uma comunidade, somente 18% dos habitantes são a favor de certa proposta. Se 30% dos homens são favoráveis á proposta e 10% das mulheres são favoráveis à mesma proposta, então a porcentagem de homens nessa comunidade é de 40%. Certo ou errado?"

Eu ja tentei muitoo, :oops: fiz supostamente que o total de habitantes é 1000 e tirei os 18% que são 180 hab. que seriam os favoráveis a proposta. Depois daí tentei tirar os 30% dos 180 que deu 54, mas num é certo. Então tentei tirar os 30% dos 1000 que é 300, mas não entra na minha cabeça como resolver esse problema. Pode me ajudar? :$


fabiosousa escreveu:Olá StheilyAnny.
Favor criar novos tópicos para suas dúvidas, não respondendo tópicos antigos em caso de outras questões.
Este tópico foi criado para sua nova dúvida.
Bons estudos!
StheilyAnny
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 25, 2011 21:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: S.O.S. PROBLEMAS DE PORCENTAGEM

Mensagempor StheilyAnny » Seg Ago 29, 2011 18:33

StheilyAnny escreveu:Olá, estou estudando pra concursos e tem uns probleminha que estão fritando minha cabeça rsrs esse é um deles:
"Em uma comunidade, somente 18% dos habitantes são a favor de certa proposta. Se 30% dos homens são favoráveis á proposta e 10% das mulheres são favoráveis à mesma proposta, então a porcentagem de homens nessa comunidade é de 40%. Certo ou errado?"

Eu ja tentei muitoo, :oops: fiz supostamente que o total de habitantes é 1000 e tirei os 18% que são 180 hab. que seriam os favoráveis a proposta. Depois daí tentei tirar os 30% dos 180 que deu 54, mas num é certo. Então tentei tirar os 30% dos 1000 que é 300, mas não entra na minha cabeça como resolver esse problema. Pode me ajudar? :$


fabiosousa escreveu:Olá StheilyAnny.
Favor criar novos tópicos para suas dúvidas, não respondendo tópicos antigos em caso de outras questões.
Este tópico foi criado para sua nova dúvida.
Bons estudos!



Como crio um novo topico?
StheilyAnny
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 25, 2011 21:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?