• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Matricial

Álgebra Matricial

Mensagempor Claudin » Qui Ago 25, 2011 10:06

Responda se verdadeiro ou falso, justificando:

b) Se A=P^tDP onde D é uma matriz diagonal, então A^t=A.

c) Se D é uma matriz diagona, então DA=AD, para toda matriz A, n x n;


É um exercício de a - e, não consegui fazer os dois.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Álgebra Matricial

Mensagempor LuizAquino » Qui Ago 25, 2011 18:13

Claudin escreveu:b) Se A=P^tDP onde D é uma matriz diagonal, então A^t=A.

Verdadeiro. Para provar, use as propriedades (XY)^t = Y^t X^t , \left(X^t\right)^t = X e D^t = D quando D é diagonal.

Claudin escreveu:c) Se D é uma matriz diagona, então DA=AD, para toda matriz A, n x n;

Falso. Tipicamente quando uma afirmação é falsa basta exibir um contra-exemplo. Ou seja, exibir uma matriz diagonal D e uma matriz A de tal modo que DA é diferente de AD.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Álgebra Matricial

Mensagempor Claudin » Qui Ago 25, 2011 22:02

Compreendi Luiz.
Mas na 2ª dúvida você confirmou como sendo falsa, utilizando o conceito de que o produto de matrizes não é comutativo?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Álgebra Matricial

Mensagempor LuizAquino » Qui Ago 25, 2011 23:13

Claudin escreveu:Mas na 2ª dúvida você confirmou como sendo falsa, utilizando o conceito de que o produto de matrizes não é comutativo?

Não! Até porque algumas matrizes comutam entre si. Isto é, existem matrizes A e B tais que AB = BA.

Por exemplo, considere as matrizes:

A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}

B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}

Você pode verificar que AB = BA.

O problema é que nem sempre duas matrizes comutam entre si.

No caso desse exercício, basta que você crie um exemplo de matrizes D e A, com D diagonal, tais que AD é diferente de DA. Com isso você justifica que a afirmação é falsa. Como eu falei na mensagem anterior, isso é "exibir um contra-exemplo".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Álgebra Matricial

Mensagempor Claudin » Sex Ago 26, 2011 01:50

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}