por Neperiano » Seg Ago 22, 2011 18:18
Ola
Resolva normalmente, entretanto na hora que der raiz de numero negativo, vc usa propriedade assim
Raiz de -4 = Raiz de 4 vezes raiz de -1, e assim resolve,
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por LuizAquino » Seg Ago 22, 2011 18:46
Neperiano escreveu:Resolva normalmente, entretanto na hora que der raiz de numero negativo, vc usa propriedade assim
Raiz de -4 = Raiz de 4 vezes raiz de -1, e assim resolve,
Só isso não basta. É necessário usar a radiciação de números complexos.
Primeiro, pela
Fórmula de Moivre, sabemos que:
![z^n = |z|^n[\cos(n\theta) + i\textrm{sen}\,(n\theta)] z^n = |z|^n[\cos(n\theta) + i\textrm{sen}\,(n\theta)]](/latexrender/pictures/099c40e09c826ec3f3c8f041b5b74c32.png)
Agora, considere um número complexo

. Se z é uma raiz n-ésima de u, isto é,

, então temos que:
![z = \sqrt[n]{|u|}\left[\cos\left(\frac{\theta+2k\pi}{n}\right) + i\textrm{sen}\,\left(\frac{\theta+2k\pi}{n}\right)\right] z = \sqrt[n]{|u|}\left[\cos\left(\frac{\theta+2k\pi}{n}\right) + i\textrm{sen}\,\left(\frac{\theta+2k\pi}{n}\right)\right]](/latexrender/pictures/b523ef1d54c13e0ceee83c47f978734c.png)
, com k = 0, 1, 2, ..., n-1.
Por exemplo, suponha que

. Desse modo, o nosso complexo u é tal que

. Aplicando a fórmula de radiciação, obtemos:

, com k = 0, 1, 2, 3, 4.
Basta agora substituir cada valor de k para calcular cada complexo z.
Aproveito para dizer que no exercício c) faça uma substituição de incógnitas. Por exemplo, se

, então ficamos com a equação

. Após cacular os dois valores para c, digamos

e

, para calcular o valor de x resolva as equações

e

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Alvadorn » Seg Ago 22, 2011 19:14
@LuizAquino
Depois de muito tentar ontem eu cheguei em Moivre e havia conseguido hehe! Obrigado novamente!
-
Alvadorn
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Sáb Fev 20, 2010 12:47
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Números Complexos - Ajuda!
por SM- » Sáb Abr 02, 2011 17:57
- 0 Respostas
- 1386 Exibições
- Última mensagem por SM-

Sáb Abr 02, 2011 17:57
Números Complexos
-
- Números Complexos Ajuda pessoal!
por Reece » Sáb Ago 18, 2012 18:28
- 1 Respostas
- 4923 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 18, 2012 19:23
Números Complexos
-
- Ajuda exercício de matemática números complexos?
por MMSR29 » Qui Jul 24, 2014 22:52
- 7 Respostas
- 9018 Exibições
- Última mensagem por adauto martins

Sáb Nov 01, 2014 15:34
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 17106 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- Numeros complexos!
por Estela » Seg Mar 17, 2008 00:57
- 7 Respostas
- 13327 Exibições
- Última mensagem por andegledson

Seg Nov 02, 2009 21:41
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.