por ewald » Seg Ago 22, 2011 00:44
Ola! fiz uma questao, envolvendo trigonometricas mas a resposta do livro tem um termo a mais que eu nao imagino de onde venha. Postei aqui a questao, minha resoluçao e a resposta do livro.
Obs.: Botei a questao em uma calculadora de integrais e ela confirma o livro.
Questao :

Minha resoluçao usando a relaçao (
![sen(x).sen(y)= \frac{1}{2}.[cos(x - y) - cos(x + y)] sen(x).sen(y)= \frac{1}{2}.[cos(x - y) - cos(x + y)]](/latexrender/pictures/fbed9e6740b2b8129fea370290dced05.png)
) :

=

=

Resposta certa:

Bem é isso, se alguem puder informar meu erro, eu agradeço!
-
ewald
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Qui Mai 05, 2011 17:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por LuizAquino » Seg Ago 22, 2011 08:52
Você tem a integral:

Primeiro, lembre-se que o cosseno é uma função par, portanto

.
E em segundo, veja que o termo

não depende de t, portanto nessa integral esse termo é uma constante.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2680 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2695 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo] Integral com função trigonometrica
por karenfreitas » Qui Jun 30, 2016 18:18
- 1 Respostas
- 3484 Exibições
- Última mensagem por adauto martins

Sáb Jul 09, 2016 18:18
Cálculo: Limites, Derivadas e Integrais
-
- [Dúvida]Função Trigonométrica Inversa em Integral.
por Jhonata » Qui Jun 07, 2012 18:06
- 2 Respostas
- 1818 Exibições
- Última mensagem por Jhonata

Qui Jun 07, 2012 20:40
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral trigonométrica
por -civil- » Sex Mar 30, 2012 03:05
- 1 Respostas
- 1496 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 31, 2012 18:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.