• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pre-Universitario (Altura da Torre)

Pre-Universitario (Altura da Torre)

Mensagempor Pre-Universitario » Qua Ago 17, 2011 18:14

Um homem ver uma torre sob um angulo de 50 Graus, andou 246 unidades
para trás e novamente viu a torre, agora sob um angulo de 25 Graus.
Supondo esses dados qual a latura da torre ?

Bom! fiz dessa forma e tambem análogo a outros que mandei
mas não tem jeito, da errada!
A forma que fiz foi a seguinte

tg {50}^{o} = \frac{c.o}{c.a} \Rightarrow 1,19 = \frac{x}{a}

tg {25}^{o} = \frac{c.o}{c.a} \Rightarrow 0,46 = \frac{x}{246+a}

Temos:
\rightarrow 1,19 = \frac{x}{a}

\rightarrow 0,46 = \frac{x}{246+a}

Da primeira equação temos: x = a1,19

Entroduzindo o resultado da primeira equação na segundo temos:
0,46 = \frac{a1,19}{246+a} \Rightarrow a1,19 = 113,16 + a0,46 \Rightarrow a = \frac{113,16}{0,73} \Rightarrow 155,01

Como  x = a1,19  \Rightarrow 155,01 . 1,19 = 184,46

Mas a resposta correta tem que ser 188 unidades
Gostaria que olhasse na onde errei ou se fiz a questão
totalmete errada! Obrigado!
Pre-Universitario
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Ago 05, 2011 17:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3
Andamento: formado

Re: Pre-Universitario (Altura da Torre)

Mensagempor Caradoc » Sex Ago 19, 2011 00:33

Suas contas estão certas, provavelmente essa diferença veio de algum arredondamento.
Considere tg 25º = 0,466 e você vai chegar no 188.
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Pre-Universitario (Altura da Torre)

Mensagempor Pre-Universitario » Sex Ago 19, 2011 16:28

consegue chegar nos 188
valeu
Pre-Universitario
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Ago 05, 2011 17:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?