por -civil- » Qua Ago 10, 2011 16:16
Boulos - 3ª ed. - Cap. 18
18-9) O segmento BE é a base de um triângulo isósceles de vértice A e é também a intersecção desse triângulo com o retângulo de vértices B, C, D, E. Os cinco pontos são coplanares. Conhecendo A = (1,1,0), B = (2,0,1) e C = (6,-2,3), obtenha as coordenadas de D e E (SO).Como o triângulo ABE é isóceles, cada ângulo interno tem 60º.
Considerando E = (

,

,

)
||

||.||

||. cos 60º =

.

3.

= ( - 2,

,

- 1).(-1,1,-1)
1)

+

= 0
dist(B,A) =

=

= dist (B,E)
dist(B,E) =

=
2) (

+ (

+ (

= 3
Como consigo encontrar mais equações para achar essas incógnitas do ponto E?
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por LuizAquino » Qui Ago 11, 2011 23:50
-civil- escreveu:Como o triângulo ABE é isóceles, cada ângulo interno tem 60º.
Já começa errado daqui! Um triângulo
isósceles não necessariamente tem todos os ângulos internos iguais a 60°.
O que temos a priori sobre um triângulo isósceles é que os ângulos da base são congruentes. Além disso, os seus dois lados que não são a base também são congruentes.
A figura abaixo ilustra o exercício.

- triângulo_isósceles_e_retângulo.png (4.09 KiB) Exibido 2260 vezes
Já que ABE é isósceles e A, B, C e E são coplanares, para determinar o ponto E você pode usar três informações:
- ele está no mesmo plano que contém A, B e C;
-
; - Os ângulos
e
são congruentes.
Por outro lado, como BCDE é um retângulo, para determinar D basta usar o fato de que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por -civil- » Qui Ago 18, 2011 00:11
Seguindo as suas dicas tenho que :

é o plano formado por A, B e C

= (1,-1,1) e

= (5,-3,3)

: X = (1,1,0) +

(1,-1.1) +

(5,-3,3)
E = (

,

,

)
||

|| = ||

||

=

3 =

Usando que

e

:
||

||.||

||.cos

= ||

||.||

||.cos

||

|| = ||

||
Desculpe mas fiquei na mesma, ainda não sei como encontrar o ponto E
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por LuizAquino » Qui Ago 18, 2011 10:15
-civil- escreveu:Seguindo as suas dicas tenho que :

é o plano formado por A, B e C

= (1,-1,1) e

= (5,-3,3)

: X = (1,1,0) +

(1,-1.1) +

(5,-3,3)
Ok. Mas, agora encontre a equação geral (cartesiana) do plano. Vamos chamar essa equação de (1).
-civil- escreveu:E = (

,

,

)
||

|| = ||

||

=

3 =

Isso está errado. Note que você deve fazer

. Refaça as suas contas considerando essa informação. Vamos chamar essa equação de (2).
-civil- escreveu:Usando que

e

:
||

||.||

||.cos

= ||

||.||

||.cos

||

|| = ||

||
Isso também está errado.
Para o ângulo

temos que:

.
Já para o ângulo

temos que:

.
Como esses ângulos são iguais, temos que

. Como

e

, no final ficamos com

. Vamos chamar essa equação de (3).
Agora, com as equações (1), (2) e (3) você monta um sistema (não linear) com 3 equações e 3 incógnitas. Basta resolvê-lo e você determina o ponto E.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Encontrar a reta t
por -civil- » Ter Ago 09, 2011 21:49
- 1 Respostas
- 2109 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 23:31
Geometria Analítica
-
- Encontrar equação (vetorial) da reta
por elisafrombrazil » Qua Abr 19, 2017 21:52
- 0 Respostas
- 1731 Exibições
- Última mensagem por elisafrombrazil

Qua Abr 19, 2017 21:52
Álgebra Linear
-
- geometria analítica estudo da reta distancia do ponta à reta
por jeffersonricardo » Dom Ago 22, 2010 08:29
- 1 Respostas
- 2286 Exibições
- Última mensagem por Pedro123

Seg Ago 23, 2010 22:24
Geometria Analítica
-
- [Geometria Analítica] - Encontrar o módulo de s.
por Nicolas1Lane » Dom Mar 23, 2014 00:33
- 2 Respostas
- 1566 Exibições
- Última mensagem por Nicolas1Lane

Dom Mar 23, 2014 19:13
Geometria Analítica
-
- [Geometria Analítica] Encontrar os vértices do hexágono
por -civil- » Qua Ago 10, 2011 16:51
- 1 Respostas
- 1990 Exibições
- Última mensagem por LuizAquino

Sex Ago 12, 2011 12:44
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.