• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Composta

Função Composta

Mensagempor lihsecundo » Sex Ago 05, 2011 23:58

Considere as funções reais f e g definidas por f(x) = x + 2 e g(x) = x², para todo x real.
Nessas condições, assinale o que for correto.
01) As funções f e g são sobrejetoras.
02) Os domínios de (f . g)(x) e f(x)/g(x) diferem por um único número real.
04) f²(x) = (f o f)(x) = x² + 4x + 4.
08) Os gráficos de f e de g se interceptam no ponto P(2,4).
16) As funções f e g são injetoras no intervalo [0,?).
32) O único valor de x para o qual a função F(x) = (g o f)(x) se anula é zero.
64) (f o g)(x) = x² + 2 e (g o f)(x) = x² + 4x + 4.

Itens corretos: 02, 08, 16 e 64
Não entendi porque o item 02 está correto.
04) f²(x) > (x+2).(x+2) = x²+2x+2x+4 .. não estaria correta? o que eu fiz de errado?
Não entendi porque o item 16 está correto também.

Obrigada!
lihsecundo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 03, 2011 17:44
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Composta

Mensagempor LuizAquino » Sáb Ago 06, 2011 00:59

Considere as funções reais f e g definidas por f(x) = x + 2 e g(x) = x², para todo x real.
Nessas condições, assinale o que for correto.


Primeiro, o exercício está considerando que f e g são funções de \mathbb{R} em \mathbb{R} . Vejamos os quesitos.

01) As funções f e g são sobrejetoras.

Falso, pois g não é sobrejetora. A imagem de g é [0,\,+\infty) e seu contradomínio é \mathbb{R} . Desse modo, \textrm{Im}(g) \neq \textrm{CD}(g) .

02) Os domínios de (f . g)(x) e f(x)/g(x) diferem por um único número real.

Verdadeiro, pois em (f\circ g)(x) o valor de x pode ser qualquer número real, enquanto que em \frac{f(x)}{g(x)} o valor de x pode ser qualquer número real exceto o zero (já que g(0) = 0 e não pode haver zero no denominador).

04) f²(x) = (f o f)(x) = x² + 4x + 4.

Falso, pois:
(i) (f\circ f)(x) = f(f(x)) = f(x) + 2 = (x+2)+2 = x+4 ;

(ii) f^2 (x) = [f(x)]^2 = (x + 2)^2 = x^2 + 4x + 4 .

Disso temos que f^2(x) \neq (f\circ f)(x) .

08) Os gráficos de f e de g se interceptam no ponto P(2,4).

Verdadeiro, pois f(2)=4 e g(2)=4.

16) As funções f e g são injetoras no intervalo [0,?).

Verdadeiro, pois se x_1 e x_2 pertencem ao intervalo dado e x_1\neq x_2, temos que f(x_1)\neq f(x_2) e g(x_1)\neq g(x_2) .

32) O único valor de x para o qual a função F(x) = (g o f)(x) se anula é zero.

Falso, pois:
(g \circ f)(x) = g(f(x)) = [f(x)]^2 = (x+2)^2, sendo que o único valor de x que anula essa função é -2.

64) (f o g)(x) = x² + 2 e (g o f)(x) = x² + 4x + 4.

Verdadeiro, pois:
(i) (f \circ g)(x) = f(g(x)) = g(x) + 2 = x^2 + 2 ;

(ii) (g \circ f)(x) = g(f(x)) = [f(x)]^2 = x^2 + 4x + 4 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?