• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Representação Geométrica do quadrado da diferença

Representação Geométrica do quadrado da diferença

Mensagempor LuizCarlos » Qui Ago 04, 2011 02:42

Ola a todos.

É o seguinte, entendi a representação geométrica do quadrado da diferença de dois termos. Agora estou tentando entender a representaçao geométrica da diferença de dois termos.

Fiz o desenho de um quadrado, para tentar explicar a minha duvida a respeito da representaçao geométrica.

Entendi que no quadrado da soma de dois termos, para calcular a area do quadrado maior, você tem que elevar o lado desse quadrado maior ao quadrado. Também tem como achar a aréa do quadrado maior, somando as áreas dos dois quadrados menores, + as areas dos dois retangulos.

Agora estou tentando entender geometricamente ( a - b)^2

A explicação para a^2 - 2.a.b + b^2 é de que pegando a área do quadrado grande, menos as duas areas dos retângulos, ficarei somente com a área do quadrado amarelo e do quadrado verde né? ou estou entendendo errado?

Obrigado
Anexos
diferenca.jpg
diferenca.jpg (10.93 KiB) Exibido 6105 vezes
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Representação Geométrica do quadrado da diferença

Mensagempor Claudin » Qui Ago 04, 2011 03:02

Se eu entendi o desenho corretamente, a ideia é essa. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Representação Geométrica do quadrado da diferença

Mensagempor LuizCarlos » Qui Ago 04, 2011 03:06

Claudin escreveu:Se eu entendi o desenho corretamente, a ideia é essa. :y:


Claudin, você conseguiu ver a imagem legal? um quadrado amarelo, um quadrado verde, dois retangulos vermelhos?
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Representação Geométrica do quadrado da diferença

Mensagempor Marcelo RoX » Dom Jun 30, 2013 23:24

Na verdade, funciona da seguinte maneira:

Quando se diz (a-b)², você calcula na verdade a área relativa a dimensão de 'a' retirando a dimensão relativa a 'b', ou seja, seria o mesmo que calcular a² retirando as dimensões de 'b' que seriam (a.b) e (a.b), no caso, seriam retirados as duas partes vermelhas, note então que ao retirar duas vezes a parte vermelha você esta retirando a mais uma parte verde e por essa razão você precisa colocá-la novamente. Sendo assim:
a² - 2.a.b + b²
Marcelo RoX
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 30, 2013 23:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}