• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Representação Geométrica do quadrado da diferença

Representação Geométrica do quadrado da diferença

Mensagempor LuizCarlos » Qui Ago 04, 2011 02:42

Ola a todos.

É o seguinte, entendi a representação geométrica do quadrado da diferença de dois termos. Agora estou tentando entender a representaçao geométrica da diferença de dois termos.

Fiz o desenho de um quadrado, para tentar explicar a minha duvida a respeito da representaçao geométrica.

Entendi que no quadrado da soma de dois termos, para calcular a area do quadrado maior, você tem que elevar o lado desse quadrado maior ao quadrado. Também tem como achar a aréa do quadrado maior, somando as áreas dos dois quadrados menores, + as areas dos dois retangulos.

Agora estou tentando entender geometricamente ( a - b)^2

A explicação para a^2 - 2.a.b + b^2 é de que pegando a área do quadrado grande, menos as duas areas dos retângulos, ficarei somente com a área do quadrado amarelo e do quadrado verde né? ou estou entendendo errado?

Obrigado
Anexos
diferenca.jpg
diferenca.jpg (10.93 KiB) Exibido 5994 vezes
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Representação Geométrica do quadrado da diferença

Mensagempor Claudin » Qui Ago 04, 2011 03:02

Se eu entendi o desenho corretamente, a ideia é essa. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Representação Geométrica do quadrado da diferença

Mensagempor LuizCarlos » Qui Ago 04, 2011 03:06

Claudin escreveu:Se eu entendi o desenho corretamente, a ideia é essa. :y:


Claudin, você conseguiu ver a imagem legal? um quadrado amarelo, um quadrado verde, dois retangulos vermelhos?
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Representação Geométrica do quadrado da diferença

Mensagempor Marcelo RoX » Dom Jun 30, 2013 23:24

Na verdade, funciona da seguinte maneira:

Quando se diz (a-b)², você calcula na verdade a área relativa a dimensão de 'a' retirando a dimensão relativa a 'b', ou seja, seria o mesmo que calcular a² retirando as dimensões de 'b' que seriam (a.b) e (a.b), no caso, seriam retirados as duas partes vermelhas, note então que ao retirar duas vezes a parte vermelha você esta retirando a mais uma parte verde e por essa razão você precisa colocá-la novamente. Sendo assim:
a² - 2.a.b + b²
Marcelo RoX
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 30, 2013 23:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.