• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Caderneta de Poupança programada

Caderneta de Poupança programada

Mensagempor pkutwak » Qua Ago 03, 2011 16:35

Estou tentando resolver uma questão de prova do BB de 2003. Nem sei por onde começar, não entendi nada. Vou anexar o arquivo. É a questão 13 e 14.

Obrigado.
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

pkutwak
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 23, 2010 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado

Re: Caderneta de Poupança programada

Mensagempor MarceloFantini » Qua Ago 03, 2011 23:50

Pkut, por favor poste a questão na íntegra ao invés de anexar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Caderneta de Poupança programada

Mensagempor pkutwak » Qui Ago 04, 2011 17:19

Coloquei o arquivo aqui, é um pdf, para não precisar digitar tudo. Tudo bem, logo que eu tiver um tempo, eu digito.

pkutwak
pkutwak
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 23, 2010 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.