por Roniberto » Sex Fev 13, 2009 15:41
Tenho dificuldade em identificar o tamanho da população a ser estudada e, consequente dificuldade com o tamanho da amostra.
Quero investigar as competências do profissional que trabalha com análise de informações. O problema é que estes profissionais tem origem em uma diversidade de profissões, com isso, não tenho mecanismos para identificar tais profissionais. Pensei em convidar o maior número prossivel de pessoas a participarem desta pesquisa. Com as características da minha população (heterogenia e pequena) estou com dificuldades de definir o tamnho da amostra.
Poderia fz uma primeira investigação sobre o assunto e no futuro os resultados desta servir de insight para delinear o tamanho da população no futuro.
Alguem poderia me appontar uma solução?
-
Roniberto
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Fev 13, 2009 15:24
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da informação
- Andamento: cursando
por Molina » Sáb Fev 14, 2009 04:13
Boa noite, Roniberto.
Para não te deixar sem resposta, pesquisei sobre isto na internet e o mais próximo que consegui chegar no seu questionamento é isso:
A amostragem probabilística reúne todas as técnicas que usam mecanismos aleatórios na seleção dos elementos da amostra, atribuindo a cada um deles uma probabilidade, conhecida a priori, de pertencer à amostra. Portanto, para tirar conclusões precisas sobre a população de estudo a partir dos resultados da amostra e ser possível o conhecimento e controle dos erros amostrais, a maneira estatisticamente correta de se escolher os indivíduos da população é através da amostragem probabilística. Na amostragem probabilística são utilizados com maior freqüência os seguintes tipos: Amostragem Aleatória Simples, Amostragem Sistemática, Amostragem Estratificada, Amostragem por Conglomerado e Amostragem por múltiplos estágios: combinações dos métodos citados acima.
Mas muitas vezes isto não é possível na prática, pois há muitas situações que dificultam a aplicação do processo totalmente aleatório de seleção, como por exemplo: na área médica por questões de ética não é possível contar com todos os indivíduos na qual se está interessado estudar. Nesses casos, pode-se usar um plano de amostragem não probabilístico, no qual a seleção da amostra depende das características do estudo em questão. fonte:
http://www.propg.ufscar.br/publica/4jc/ ... riusso.htmEspero não ter viajado muito na ajuda.
Abraços.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Roniberto » Ter Fev 17, 2009 09:22
Valeu Diego!
A dica foi na mosca e a referencia que passou é o que eu procurava para validar meu trabalho.
Um abraço
-
Roniberto
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Fev 13, 2009 15:24
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da informação
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo do Tamanho de uma amostra]
por danimalaca » Seg Dez 03, 2012 19:10
- 1 Respostas
- 1721 Exibições
- Última mensagem por Neperiano

Qua Dez 05, 2012 14:09
Estatística
-
- Não consigo calcular o tamanho de um terreno.
por sirlenibatista » Ter Mar 23, 2010 21:40
- 3 Respostas
- 3437 Exibições
- Última mensagem por Neperiano

Qua Mar 31, 2010 20:11
Cálculo: Limites, Derivadas e Integrais
-
- Análise combinatória para um vetor de tamanho n
por lfccruz » Qua Ago 21, 2013 06:10
- 0 Respostas
- 1366 Exibições
- Última mensagem por lfccruz

Qua Ago 21, 2013 06:10
Análise Combinatória
-
- Crescimento de uma população de rãs com integral.
por Matheus Lacombe O » Dom Ago 04, 2013 18:26
- 3 Respostas
- 1858 Exibições
- Última mensagem por Russman

Ter Ago 06, 2013 13:59
Cálculo: Limites, Derivadas e Integrais
-
- Pequena dúvida
por Fernanda Lauton » Sáb Jul 03, 2010 22:53
- 4 Respostas
- 2328 Exibições
- Última mensagem por Fernanda Lauton

Seg Jul 05, 2010 13:37
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.