• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Colégio Naval

Colégio Naval

Mensagempor Joan » Seg Jul 25, 2011 16:38

Sejam p e q números reais positicos tais que \frac{1}{p} + \frac{1}{q} = \frac{1}{\sqrt[]{2010}}. Qual o valor mínimo do produto pq?

oq consegui fazer foi somente o inicio e depois nao sei oq faço:

\frac{p+q}{pq} = \frac{1}{\sqrt[]{2010}} \rightarrow p+q = \frac{pq}{\sqrt[]{2010}}

Infelismente nao sei oq fazer mais...

desde já grato.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Colégio Naval

Mensagempor Guill » Seg Jul 25, 2011 17:17

\frac{1}{p}+\frac{1}{q}=\frac{1}{\sqrt[]{2010}}

\frac{p+q}{pq}=\frac{1}{\sqrt[]{2010}}


Racionalizando:

\frac{p+q}{pq}=\frac{\sqrt[]{2010}}{2010}

pq=2010
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Colégio Naval

Mensagempor Joan » Seg Jul 25, 2011 18:04

Guill escreveu:\frac{1}{p}+\frac{1}{q}=\frac{1}{\sqrt[]{2010}}

\frac{p+q}{pq}=\frac{1}{\sqrt[]{2010}}


Racionalizando:

\frac{p+q}{pq}=\frac{\sqrt[]{2010}}{2010}

pq=2010


Amigo agradeço a boa vontade, mais no gabarito da prova tá a resposta como 8040. oq pode ta errado?
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Colégio Naval

Mensagempor MarceloFantini » Ter Jul 26, 2011 11:04

Continuando o que o colega Guill fez, temos:

p+q = \frac{pq}{\sqrt{2010}}

Mas sabemos que \frac{p+q}{2} \geq \sqrt{pq}. Portanto, \frac{pq}{\sqrt{2010}} \geq 2 \sqrt{pq} e segue que \sqrt{pq} \geq 2 \sqrt{2010}. Finalmente, pq \geq 4 \cdot 2010 = 8040, e a resposta é que o valor mínimo de pq é 8040.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Colégio Naval

Mensagempor LuizAquino » Ter Jul 26, 2011 11:25

Guill escreveu:Racionalizando:

\frac{p+q}{pq}=\frac{\sqrt[]{2010}}{2010}

pq=2010


Joan escreveu:Amigo agradeço a boa vontade, mais no gabarito da prova tá a resposta como 8040. oq pode ta errado?


O erro na solução de Guill está no fato de que se \frac{a}{b} = \frac{c}{d} , então não necessariamente a = c e b = d.

Por exemplo, se a = 5 e b = 10, temos que \frac{a}{b} = \frac{1}{2} . Entretanto, note que a\neq 1 e b\neq 2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Colégio Naval

Mensagempor Joan » Ter Jul 26, 2011 14:55

Nao comprendi, mais obrigado a todos pela ajuda.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Colégio Naval

Mensagempor Fabricio dalla » Ter Jul 26, 2011 16:47

Mas sabemos que \frac{p+q}{2}\geq\sqrt[2]{pq}


eu n entendi o que Marcelo Fantine fez.ele pré supôs fazendo aquela comparaçao de que a media aritimetica e maior que media geometrica pra conseguir resolver a questão ?
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Colégio Naval

Mensagempor MarceloFantini » Ter Jul 26, 2011 16:58

Isso é um teorema importante, que a média aritmética é sempre maior ou igual a média geométrica.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Colégio Naval

Mensagempor LuizAquino » Ter Jul 26, 2011 21:35

Fabricio dalla escreveu:eu n entendi o que Marcelo Fantine fez.ele pré supôs fazendo aquela comparaçao de que a media aritimetica e maior que media geometrica pra conseguir resolver a questão ?


Dados dois números reais positivos, é fácil verificar que \frac{a+b}{2} \geq \sqrt{ab} .

Em outras palavras, como escreveu o colega Fantini, essa desigualdade nos diz que a média aritmética entre dois números é sempre maior ou igual do que a média geométrica entre eles.

Para justificar essa desigualdade, começamos observando o fato de que \left(\sqrt{a} - \sqrt{b}\right)^2 \geq 0, para quaisquer a e b reais positivos.

Desenvolvendo o produto notável, obtemos:

\left(\sqrt{a}\right)^2 - 2\sqrt{a}\sqrt{b} +  \left(\sqrt{b}\right)^2 \geq 0

Mas, isso é o mesmo que:

a - 2\sqrt{ab} +  b \geq 0

Por fim, podemos reescrever essa desigualdade como:

\frac{a +  b}{2} \geq \sqrt{ab}

#
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.