por Julio_Cesar » Qua Jul 13, 2011 14:18
Preciso de ajuda para resolver esta questão:
Se 1/raiz quadrada de [x^2-mx +m)] é um número real. X E R, então a diferença entre o maior e o menor valor inteiro que m pode assumir é:
( R: 2)
Tentei resolver da seguinte forma:
- Para discriminante menor que zero: não haverá raízes reais.
- Para discriminante igual a zero: haverá duas raízes reais e iguais m=0 ou m =4
- Para discriminante maior que zero: haverá duas raízes reais e distintas para m menor que 0 ou m maior que 4.
Pelo enunciado o denominador não poderá ser zero ou negativo, porque x E R.
Como resolver? Posso aceitar que a função não tenha raízes reais, mas para qualquer valor de x, a função vai assumir valores reais? ( Se considero m =4 ou maior que 4, m=0 ou menor que 0, a função vai admitir raízes reais e nestes pontos ela será igual a o)
-
Julio_Cesar
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jul 13, 2011 13:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ciências naturais
- Andamento: cursando
por LuizAquino » Seg Jul 25, 2011 15:52
Para qualquer número real x, deseja-se que o número

também seja real.
Para isso acontecer, será necessário que para qualquer número real x tenhamos:

Considere a função polinomial do 2º grau dada por

. Sabemos que

para qualquer número real x se duas coisas acontecerem:
(i)

;
(ii)

, sendo que

.
Agora, basta aplicar esse conhecimento na função

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (MACK-SP) Função do 1º Grau
por 13run0 » Qui Mai 27, 2010 17:54
- 4 Respostas
- 2802 Exibições
- Última mensagem por 13run0

Sex Mai 28, 2010 14:15
Funções
-
- Função quadrática
por Ananda » Sex Mar 28, 2008 16:00
- 6 Respostas
- 8989 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 21:25
Funções
-
- Função quadratica
por Aline » Qui Jun 18, 2009 14:22
- 2 Respostas
- 2516 Exibições
- Última mensagem por Cleyson007

Sex Jun 19, 2009 10:00
Funções
-
- Função Quadratica
por Aline » Qui Jun 18, 2009 14:37
- 1 Respostas
- 1924 Exibições
- Última mensagem por Marcampucio

Qui Jun 18, 2009 16:45
Funções
-
- Função Quadratica
por Aline » Sáb Jun 20, 2009 18:23
- 1 Respostas
- 2009 Exibições
- Última mensagem por Molina

Dom Jun 21, 2009 20:28
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.