por Julio_Cesar » Qua Jul 13, 2011 14:18
Preciso de ajuda para resolver esta questão:
Se 1/raiz quadrada de [x^2-mx +m)] é um número real. X E R, então a diferença entre o maior e o menor valor inteiro que m pode assumir é:
( R: 2)
Tentei resolver da seguinte forma:
- Para discriminante menor que zero: não haverá raízes reais.
- Para discriminante igual a zero: haverá duas raízes reais e iguais m=0 ou m =4
- Para discriminante maior que zero: haverá duas raízes reais e distintas para m menor que 0 ou m maior que 4.
Pelo enunciado o denominador não poderá ser zero ou negativo, porque x E R.
Como resolver? Posso aceitar que a função não tenha raízes reais, mas para qualquer valor de x, a função vai assumir valores reais? ( Se considero m =4 ou maior que 4, m=0 ou menor que 0, a função vai admitir raízes reais e nestes pontos ela será igual a o)
-
Julio_Cesar
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jul 13, 2011 13:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ciências naturais
- Andamento: cursando
por LuizAquino » Seg Jul 25, 2011 15:52
Para qualquer número real x, deseja-se que o número

também seja real.
Para isso acontecer, será necessário que para qualquer número real x tenhamos:

Considere a função polinomial do 2º grau dada por

. Sabemos que

para qualquer número real x se duas coisas acontecerem:
(i)

;
(ii)

, sendo que

.
Agora, basta aplicar esse conhecimento na função

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (MACK-SP) Função do 1º Grau
por 13run0 » Qui Mai 27, 2010 17:54
- 4 Respostas
- 2925 Exibições
- Última mensagem por 13run0

Sex Mai 28, 2010 14:15
Funções
-
- Função quadrática
por Ananda » Sex Mar 28, 2008 16:00
- 6 Respostas
- 9221 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 21:25
Funções
-
- Função quadratica
por Aline » Qui Jun 18, 2009 14:22
- 2 Respostas
- 2624 Exibições
- Última mensagem por Cleyson007

Sex Jun 19, 2009 10:00
Funções
-
- Função Quadratica
por Aline » Qui Jun 18, 2009 14:37
- 1 Respostas
- 2007 Exibições
- Última mensagem por Marcampucio

Qui Jun 18, 2009 16:45
Funções
-
- Função Quadratica
por Aline » Sáb Jun 20, 2009 18:23
- 1 Respostas
- 2085 Exibições
- Última mensagem por Molina

Dom Jun 21, 2009 20:28
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.