• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qua Jul 20, 2011 19:42

Não consegui chegar ao resultado correto resolvendo o limite normalmente.
Somente utilizando a regra de L'Hospital.

\lim_{x\rightarrow2}\frac{x^3-5x^2+8x-4}{x^4-5x-6}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 19:42

O problema em resolver o limite normalmente foi eu não conseguir encontrar as raízes dos polinômios no contexto. Achei somente que 2 é raiz.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qua Jul 20, 2011 19:54

tenta pelo metodo de ruffini!!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qua Jul 20, 2011 20:10

ache as raizes do denominador primeiro, pelo metodo de ruffini, e depois vai jogando as mesmas raizes no numerador que provavelmente alguma vai ser igual!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jul 21, 2011 02:08

Eu tentei Briot Ruffini, mas não estou encontrando um resultado plausível da fatoração. Me parece que o 2 e o 1 é raiz, mas não consegui fatorar corretamente.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Jul 21, 2011 03:06

2 é raíz em ambos, portanto use o dispositivo de Briot Ruffini em ambos e você encontrará um polinômio do segundo grau no numerador e terceiro grau no denominador. Perceba que na hora de usar o dispositivo no denominador o coeficiente de x^3 e x^2 são zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 21, 2011 19:47

Então a resolução seria:

\lim_{x\rightarrow2}\frac{(x^3-5x^2+8x-4)}{(x^4-5x-6)}

\lim_{x\rightarrow2}\frac{(x-1)(x-2)(x-2)}{(x^2+x+3)(x-2)(x+1)}

\lim_{x\rightarrow2}\frac{(x-1)(x-2)}{(x^2+x+3)(x+1)}\Rightarrow \frac{(2-1)(2-2)}{(2^2+2+3)(2+1)}\Rightarrow\frac{0}{27}=0
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qui Jul 21, 2011 19:53

se todas as suas contas estao corretas, essa e a resposta, pois o objetivo da simplificação é tirar a indeterminação do denominador! e este foi feito!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jul 21, 2011 20:30

Acho que está correto. O gabarito foi compátivel. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qui Jul 21, 2011 20:50

.
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}