• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Preciso de ajuda, por favor!

Preciso de ajuda, por favor!

Mensagempor [XF] Tempest » Dom Fev 08, 2009 12:21

Por favor, gostaria que me ajudassem na resolução do seguinte exercício:

"Qual o menor número de pessoas, num conjunto, para garantir que, pelo menos, 4 pessoas nasceram no mesmo ano?"
Segundo a minha apostila, o resultado é 5º 9' 10". Tentei várias vezes resolver o exercício, mas nos resultados não batem. ¬¬'

Agradeço desde já a quem me ajudar. :)
Obrigada.
[XF] Tempest
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Fev 08, 2009 12:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Preciso de ajuda, por favor!

Mensagempor Molina » Dom Fev 08, 2009 14:13

Boa tarde, Tempest.

Confesso que não me lembro de ter visto algo parecido, mas procurei na internet alguma coisa relacionada e achei no Wikipedia: http://pt.wikipedia.org/wiki/Express%C3%A3o_regular
Não sei até que ponto isso lhe ajuda, mas na parte dos "Usos" informa que:

Expressões regulares são usadas por diversos editores de texto, utilitários e linguagens de programação para procurar e manipular texto baseado em padrões. Por exemplo, Perl e Tcl possuem suporte a expressões regulares nativamente. Diversos utilitários de distribuições Unix incluem o editor e texto ed, que popularizou o conceito de expressão regular, e o filtro grep.

(...)

Pode-se filtrar pessoas que nasceram num determinado ano, mês ou dia. Por exemplo, o uso do padrão ^[0-9]{4}-10-[0-9]{2} (.*)$ identifica o nome das pessoas que nasceram em outubro. Para o cadastro acima seriam retornados dois grupos de captura, \1 contendo "João Alberto" e \2 contendo "Carlos Silva". Explorando o exemplo anterior e o uso de validação de formatos digitais, é possível usar expressões regulares para validar as datas presentes no arquivo de texto de aniversários acima.

(...)


Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}