• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gostaria de saber, como surgiu esta formula.

Gostaria de saber, como surgiu esta formula.

Mensagempor bencz » Qui Jul 14, 2011 00:27

Olá, gostaria de saber como surgiu a formula para calcular a area total de um triangulo

Formula: {A}_{t} = \frac{|D|}{2}

Obrigado.
bencz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 14, 2011 00:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Gostaria de saber, como surgiu esta formula.

Mensagempor Molina » Dom Jul 17, 2011 15:10

Boa tarde.

Seja o triângulo A_1A_2A_3, onde os vértices A_1=(a_1,b_1), A_2=(a_2,b_2) e A_3=(a_3,b_3) são pontos quaisquer. A partir da origem O traçamos os segmentos OP e OQ, respectivamente equipotentes a A_3A_1 e A_3A_2, logo P=(\alpha_1,\beta_1) e Q=(\alpha_2,\beta_2), com \alpha_1=a_1-a_3, \beta_1=b_1-b_3, \alpha_2=a_2-a_3, \beta_2=b_2-b_3.

Então, A_t=area~de~A_1A_2A_3=area~de~OPQ=\frac{1}{2}|\alpha_1\beta_2-\alpha2\beta_1|

Ou seja, A_t = \frac{1}{2}|(a_1-a_3)(b_2-b_3)-(a_2-a_3)(b_1-b_3)|

Mas,

(a_1-a_3)(b_2-b_3)-(a_2-a_3)(b_1-b_3)=a_1b_2-a_1b_3-a_3b_2+a_3b_3-a_2b_1+a_2b_3+a_3b_1-a_3b_3 = a_1b_2-a_1b_3-a_3b_2-a_2b_1+a_2b_3+a_3b_1

E

D=
\begin{vmatrix}
   a_1 & b_1 & 1  \\ 
   a_2 & b_2 & 1  \\
   a_3 & b_3 & 1
\end{vmatrix}
= a_1b_2 + b_1a_3 + a_2b_3 - b_2a_3 - b_1a_2 - a_1b_3

O que implica que temos que:

A_t = \frac{1}{2}|D|


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.