• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstre a propriedade

Demonstre a propriedade

Mensagempor Aliocha Karamazov » Sáb Jul 09, 2011 02:02

Galera, tenho um exercício de demonstrar as propriedade da imagem de uma função. Sempre que posto no fórum, mostro como tentei fazer o exercício. Dessa vez, o problema é que não sei como demonstrar nesse caso específico. Gostaria de uma ajuda no primeiro exercício, aí eu faço os outros...

Só para deixar claro, f(X) denota a imagem do conjunto X através da função f. X é um subconjunto do domínio. O exercício é esse:

Prove que f(X) \cup f(Y)=f(X \cup Y)

Agradeço a quem puder ajudar.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Demonstre a propriedade

Mensagempor Guill » Dom Jul 10, 2011 09:33

Sejam f(x) e f(y) duas imagens das respectívas funções x e y. Sendo assim:

f(x)?f(y) representa a união das imagens dos conjuntos x e y.


Sabe-se que a imagem de um conjunto é obtida pelos valores de seu domínio. Como x e y são os domínios das funções f(x) e f(y), f(x)?f(y) é o agrupamento das imagens. Sabemos que as imagens f(x) e f(y) são obtidas a partir de x e y. Logo, se reunirmos os termos que foram usados para encontrar as imagens f(x) e f(y) e jogarmos na função, teremos os mesmos valores. Com isso:

f(x?y) = f(x)?f(y)



Poderia ter feito assim:

Seja x e y, conjuntos tais que:

x = {a;b;c;d;e...}
y = {f;g;h;i;j...}

As imagens f(x) e f(y) são:

f(x) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...
f(y) = f(f) ; f(g) ; f(h) ; f(i) ; f(j)...


Podemos definir assim:

x?y = {a;b;c;d;e...f;g;h;i;j...}

A união das imagens é:

f(x)?f(y) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...f(f) ; f(g) ; f(h) ; f(i) ; f(j)...


Sabe-se que:

f(x?y) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...f(f) ; f(g) ; f(h) ; f(i) ; f(j)... pois x?y = {a;b;c;d;e...f;g;h;i;j...}. Sendo assim, podemos determinar que:

f(x?y) = f(x)?f(y)
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.