• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limites infinitos

limites infinitos

Mensagempor oleve » Qua Jan 21, 2009 18:15

oi gente , alguem sabe por que \lim_{x\rightarrow{2}^{-}}ln \left(x-2 \right)-\infty? me ajudem!!!!!!!!!!
oleve
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 20, 2008 18:21
Formação Escolar: GRADUAÇÃO
Área/Curso: QUÍMICA
Andamento: cursando

Re: limites infinitos

Mensagempor Sandra Piedade » Sáb Jan 24, 2009 22:30

Porque o gráfico de ln(x-2) se obtém do gráfico de ln(x) movendo-o duas unidades para a direita. Assim, a assímptota vertical que estava no x=0 passa a estar no x=2. ;)
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.