• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Circular - dúvida!

Função Circular - dúvida!

Mensagempor jamiel » Sáb Jul 02, 2011 04:23

Calcule o valor da expressão(para x = pi/6):

\left(\frac{sin(x)+sin(2x)}{sin(7x)-sin(3x)} \right)

Eu fui resolvendo pelas formulas de adição e subtração, mas não deu o resultado do gabarito. Então, fui tentando resolver, de fato, eu fiz, mas não entendi muito bem o "porquê"

\left(sen a * cos b + sen b * cos a \right)

\left(\frac{1}{2}*\frac{1}{2} + 0.87*0.87 \right)

De fato, se eu cortar sen a e cos a, fico com:

\left(\frac{1}{2}+0.87 \right)


\left(\frac{\sqrt[]{3}+1}{2} \right)

No denominador, eu tenho

\left(sin(7x) - sin(3x) \right)

\left(-\frac{1}{2}*0 - 1 * (-0.87)\right)

De fato, se eu cortar 0 e -0.87, eu fico com

\left(-\frac{1}{2}-1 \right)


\left(-\frac{3}{2} \right)


Por fim,

\left(\frac{\frac{\sqrt[]{3}+1}{2}}{-\frac{3}{2}} \right) 



\left(\frac{-\sqrt[]{3}-1}{3} \right)

Agradeço qualquer ajuda, desde já!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Circular - dúvida!

Mensagempor MarceloFantini » Sáb Jul 02, 2011 18:56

Você pode simplesmente colocar nos senos e calcular quanto dá:

\left( \frac{\sin(\frac{\pi}{6}) - \sin(\frac{2 \pi}{6})}{\sin(\frac{7 \pi}{6}) - \sin(\frac{3 \pi}{6})} \right)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.