por benni » Ter Jun 28, 2011 15:27
Considere a função h(x) = Ln[(x-1)(x+2)].(notação: Lnx = logx(base e) , exp x =

, e = 2,71828... "numero de Euler" usado como base neperiana)
I - Ache o domino(h).
II - Quais os zeros(raizes ) de h?
-
benni
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Mar 02, 2011 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
por meuemail » Ter Jun 28, 2011 17:57
A norma do site fala que não é para enviar a pergunta sem as tentativas, é para informar qual sua dificuldade.
Para achar as raizes.
Ln[(x - 1)(x + 2)] = 0
Ln[(x - 1)(x + 2)] = ln 1 ........ iguala logartmandos
(x - 1)(x + 2) = 1 ....... resolve a equação do segundo grau.
Para achar o domínio, faça as condições de existencias e terá o domínio.
-
meuemail
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Dez 11, 2010 23:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por benni » Ter Jun 28, 2011 21:01
Perdão , na correria esqueci de colocar o meu desenvolvimento:
I - Dominio x²+x-2>0
raizes x,= -2 e x,, = 1 então __
+___
-2__
-___
1___
+____
D = ] -

;-2]

]1 +

II - x²+x-2 = 1 --> x²+x -3 = 0 --> x,e x,, =
![\frac{-1+\sqrt[2]{13}}{2} \frac{-1+\sqrt[2]{13}}{2}](/latexrender/pictures/df0ca572d64f6dba81c26acdcf9bbbf6.png)
;
![\frac{-1-\sqrt[2]{13}}{2} \frac{-1-\sqrt[2]{13}}{2}](/latexrender/pictures/3cb76f313b7454be3c96ad12be6699a2.png)
-
benni
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Mar 02, 2011 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
por MarceloFantini » Ter Jun 28, 2011 22:25
Cuidado pois não pode ser fechado em -2 já que isso zera o logaritmando também.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função real definida pela soma de uma função par c/uma ímpar
por Taah » Sáb Mar 27, 2010 15:33
- 3 Respostas
- 5189 Exibições
- Última mensagem por Taah

Dom Mar 28, 2010 13:21
Funções
-
- [plano tangente a função de duas variaveis dada por função]
por isaac naruto » Qui Dez 31, 2015 16:35
- 0 Respostas
- 4328 Exibições
- Última mensagem por isaac naruto

Qui Dez 31, 2015 16:35
Cálculo: Limites, Derivadas e Integrais
-
- [Desigualdade] entre função exponencial e função potência
por VitorFN » Sex Mai 26, 2017 15:18
- 1 Respostas
- 5413 Exibições
- Última mensagem por adauto martins

Sex Jul 07, 2017 12:17
Álgebra Elementar
-
- +uma função das trevas.ajuda aew!(função par mas heim!?)
por Fabricio dalla » Dom Fev 27, 2011 16:12
- 2 Respostas
- 3325 Exibições
- Última mensagem por LuizAquino

Dom Mar 06, 2011 09:17
Funções
-
- [FUNÇÃO] Não consigo achar a fórmula da função
por LAZAROTTI » Qui Set 27, 2012 00:06
- 1 Respostas
- 2821 Exibições
- Última mensagem por MarceloFantini

Qui Set 27, 2012 07:13
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.